scholarly journals Drosophila Integrin-Linked Kinase Is Required at Sites of Integrin Adhesion to Link the Cytoskeleton to the Plasma Membrane

2001 ◽  
Vol 152 (5) ◽  
pp. 1007-1018 ◽  
Author(s):  
Christos G. Zervas ◽  
Stephen L. Gregory ◽  
Nicholas H. Brown

Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human β1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK–green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.

2002 ◽  
Vol 115 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Jason M. Haugh ◽  
Tobias Meyer

Although prolonged cell signaling is attenuated by internalization and downregulation of active receptors, it is now appreciated that many receptors continue to signal in intracellular compartments. Employing enhanced green fluorescent protein fusion probes, we have investigated the hypothesis that multiple signaling pathways are affected by the differential trafficking of membrane substrates such as PtdIns(4,5)P2. A phosphotyrosine-specific probe, but not a PtdIns(4,5)P2-specific probe, colocalized with internalized EGF as well as transferrin in EGF-stimulated living cells expressing autophosphorylation-competent EGF receptors. Neither probe colocalized with transferrin in the absence of EGF, demonstrating that the reduced level of accessible PtdIns(4,5)P2 in endosomes is constitutive. Finally, a PtdIns(3,4,5)P3-specific probe, which monitors phosphorylation of PtdIns(4,5)P2 by phosphoinositide 3-kinases, was recruited to the plasma membrane but not to EGF- or transferrin-containing endosomes in response to EGF stimulation. These results suggest that while many internalized receptors continue to engage intracellular enzymes, the phospholipase C and phosphoinositide 3-kinase signaling pathways are abrogated by the constitutive lack of accessible PtdIns(4,5)P2 in endosomes.


2008 ◽  
Vol 294 (5) ◽  
pp. F1101-F1108 ◽  
Author(s):  
Anna Taranta ◽  
Stefania Petrini ◽  
Alessia Palma ◽  
Liliana Mannucci ◽  
Martijn J. Wilmer ◽  
...  

Nephropathic cystinosis is a lysosomal disorder caused by functional defects of cystinosin, which mediates cystine efflux into the cytosol. The protein sequence contains at least two signals that target the protein to the lysosomal compartment, one of which is located at the carboxy terminal tail (GYDQL). We have isolated from a human kidney cDNA library a cystinosin isoform, which is generated by an alternative splicing of exon 12 that removes the GYDQL motif. Based on its last three amino acids, we have termed this protein cystinosin-LKG. Contrary to the lysosomal cystinosin isoform, expression experiments performed by transient transfection of green fluorescent protein fusion plasmids in HK2 cells showed that cystinosin-LKG is expressed in the plasma membrane, in lysosomes, and in other cytosolic structures. This subcellular localization of the protein was confirmed by transmission electron microscopy. In addition, immunogold labeling was observed in the endoplasmic reticulum and in the Golgi apparatus. Expression of the protein in renal tubular structures was also directly demonstrated by immunostaining of normal human kidney sections. The plasma membrane localization of cystinosin-LKG was directly tested by [35S]cystine flux experiments in COS-1 cells. In the presence of a proton gradient, a marked enhancement of intracellular cystine transport was observed in cells overexpressing this isoform. These data indicate that the expression of the gene products encoded by the CTNS gene is not restricted to the lysosomal compartment. These finding may help elucidate the mechanisms of cell dysfunction in this disorder.


2006 ◽  
Vol 17 (12) ◽  
pp. 4937-4945 ◽  
Author(s):  
Peter M. Haggie ◽  
Jung Kyung Kim ◽  
Gergely L. Lukacs ◽  
A. S. Verkman

Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, generally not moving beyond 100–200 nm. However, CFTR became mobile over micrometer distances after 1) truncations of the carboxy terminus, which contains a C-terminal PDZ (PSD95/Dlg/ZO-1) binding motif; 2) blocking PDZ binding by C-terminal green fluorescent protein fusion; 3) disrupting CFTR association with actin by expression of a mutant EBP50/NHERF1 lacking its ezrin binding domain; or 4) skeletal disruption by latrunculin. CFTR also became mobile when the cytoskeletal adaptor protein binding capacity was saturated by overexpressing CFTR or its C terminus. Our data demonstrate remarkable and previously unrecognized immobilization of CFTR in the plasma membrane and provide direct evidence that C-terminal coupling to the actin skeleton via EBP50/ezrin is responsible for its immobility.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2006 ◽  
Vol 17 (7) ◽  
pp. 3085-3094 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Peter Schweinsberg ◽  
...  

Caveolin is the major protein component required for the formation of caveolae on the plasma membrane. Here we show that trafficking of Caenorhabditis elegans caveolin-1 (CAV-1) is dynamically regulated during development of the germ line and embryo. In oocytes a CAV-1-green fluorescent protein (GFP) fusion protein is found on the plasma membrane and in large vesicles (CAV-1 bodies). After ovulation and fertilization the CAV-1 bodies fuse with the plasma membrane in a manner reminiscent of cortical granule exocytosis as described in other species. Fusion of CAV-1 bodies with the plasma membrane appears to be regulated by the advancing cell cycle, and not fertilization per se, because fusion can proceed in spe-9 fertilization mutants but is blocked by RNA interference–mediated knockdown of an anaphase-promoting complex component (EMB-27). After exocytosis, most CAV-1-GFP is rapidly endocytosed and degraded within one cell cycle. CAV-1 bodies in oocytes appear to be produced by the Golgi apparatus in an ARF-1–dependent, clathrin-independent, mechanism. Conversely endocytosis and degradation of CAV-1-GFP in embryos requires clathrin, dynamin, and RAB-5. Our results demonstrate that the distribution of CAV-1 is highly dynamic during development and provides new insights into the sorting mechanisms that regulate CAV-1 localization.


2000 ◽  
Vol 11 (11) ◽  
pp. 3873-3883 ◽  
Author(s):  
Maryse Bailly ◽  
Jeffrey Wyckoff ◽  
Boumediene Bouzahzah ◽  
Ross Hammerman ◽  
Vonetta Sylvestre ◽  
...  

To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing.


2001 ◽  
Vol 12 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
Jack Rohrer ◽  
Rosalind Kornfeld

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a coveringN-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.


1997 ◽  
Vol 139 (6) ◽  
pp. 1465-1476 ◽  
Author(s):  
Norio Sakai ◽  
Keiko Sasaki ◽  
Natsu Ikegaki ◽  
Yasuhito Shirai ◽  
Yoshitaka Ono ◽  
...  

We expressed the γ-subspecies of protein kinase C (γ-PKC) fused with green fluorescent protein (GFP) in various cell lines and observed the movement of this fusion protein in living cells under a confocal laser scanning fluorescent microscope. γ-PKC–GFP fusion protein had enzymological properties very similar to that of native γ-PKC. The fluorescence of γ-PKC– GFP was observed throughout the cytoplasm in transiently transfected COS-7 cells. Stimulation by an active phorbol ester (12-O-tetradecanoylphorbol 13-acetate [TPA]) but not by an inactive phorbol ester (4α-phorbol 12, 13-didecanoate) induced a significant translocation of γ-PKC–GFP from cytoplasm to the plasma membrane. A23187, a Ca2+ ionophore, induced a more rapid translocation of γ-PKC–GFP than TPA. The A23187-induced translocation was abolished by elimination of extracellular and intracellular Ca2+. TPA- induced translocation of γ-PKC–GFP was unidirected, while Ca2+ ionophore–induced translocation was reversible; that is, γ-PKC–GFP translocated to the membrane returned to the cytosol and finally accumulated as patchy dots on the plasma membrane. To investigate the significance of C1 and C2 domains of γ-PKC in translocation, we expressed mutant γ-PKC–GFP fusion protein in which the two cysteine rich regions in the C1 region were disrupted (designated as BS 238) or the C2 region was deleted (BS 239). BS 238 mutant was translocated by Ca2+ ionophore but not by TPA. In contrast, BS 239 mutant was translocated by TPA but not by Ca2+ ionophore. To examine the translocation of γ-PKC–GFP under physiological conditions, we expressed it in NG-108 cells, N-methyl-d-aspartate (NMDA) receptor–transfected COS-7 cells, or CHO cells expressing metabotropic glutamate receptor 1 (CHO/mGluR1 cells). In NG-108 cells , K+ depolarization induced rapid translocation of γ-PKC–GFP. In NMDA receptor–transfected COS-7 cells, application of NMDA plus glycine also translocated γ-PKC–GFP. Furthermore, rapid translocation and sequential retranslocation of γ-PKC–GFP were observed in CHO/ mGluR1 cells on stimulation with the receptor. Neither cytochalasin D nor colchicine affected the translocation of γ-PKC–GFP, indicating that translocation of γ-PKC was independent of actin and microtubule. γ-PKC–GFP fusion protein is a useful tool for investigating the molecular mechanism of γ-PKC translocation and the role of γ-PKC in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document