Identification and subcellular localization of a new cystinosin isoform

2008 ◽  
Vol 294 (5) ◽  
pp. F1101-F1108 ◽  
Author(s):  
Anna Taranta ◽  
Stefania Petrini ◽  
Alessia Palma ◽  
Liliana Mannucci ◽  
Martijn J. Wilmer ◽  
...  

Nephropathic cystinosis is a lysosomal disorder caused by functional defects of cystinosin, which mediates cystine efflux into the cytosol. The protein sequence contains at least two signals that target the protein to the lysosomal compartment, one of which is located at the carboxy terminal tail (GYDQL). We have isolated from a human kidney cDNA library a cystinosin isoform, which is generated by an alternative splicing of exon 12 that removes the GYDQL motif. Based on its last three amino acids, we have termed this protein cystinosin-LKG. Contrary to the lysosomal cystinosin isoform, expression experiments performed by transient transfection of green fluorescent protein fusion plasmids in HK2 cells showed that cystinosin-LKG is expressed in the plasma membrane, in lysosomes, and in other cytosolic structures. This subcellular localization of the protein was confirmed by transmission electron microscopy. In addition, immunogold labeling was observed in the endoplasmic reticulum and in the Golgi apparatus. Expression of the protein in renal tubular structures was also directly demonstrated by immunostaining of normal human kidney sections. The plasma membrane localization of cystinosin-LKG was directly tested by [35S]cystine flux experiments in COS-1 cells. In the presence of a proton gradient, a marked enhancement of intracellular cystine transport was observed in cells overexpressing this isoform. These data indicate that the expression of the gene products encoded by the CTNS gene is not restricted to the lysosomal compartment. These finding may help elucidate the mechanisms of cell dysfunction in this disorder.

2003 ◽  
Vol 284 (6) ◽  
pp. C1633-C1644 ◽  
Author(s):  
Mohammed A. Khadeer ◽  
Zhihui Tang ◽  
Harriet S. Tenenhouse ◽  
Maribeth V. Eiden ◽  
Heini Murer ◽  
...  

We previously demonstrated that inhibition of Na-dependent phosphate (Pi) transport in osteoclasts led to reduced ATP levels and diminished bone resorption. These findings suggested that Na/Picotransporters in the osteoclast plasma membrane provide Pifor ATP synthesis and that the osteoclast may utilize part of the Pireleased from bone resorption for this purpose. The present study was undertaken to define the cellular localization of Na/Picotransporters in the mouse osteoclast and to identify the proteins with which they interact. Using glutathione S-transferase (GST) fusion constructs, we demonstrate that the type IIa Na/Picotransporter (Npt2a) in osteoclast lysates interacts with the Na/H exchanger regulatory factor, NHERF-1, a PDZ protein that is essential for the regulation of various membrane transporters. In addition, NHERF-1 in osteoclast lysates interacts with Npt2a in spite of deletion of a putative PDZ-binding domain within the carboxy terminus of Npt2a. In contrast, deletion of the carboxy-terminal TRL amino acid motif of Npt2a significantly reduced its interaction with NHERF-1 in kidney lysates. Studies in osteoclasts transfected with green fluorescent protein-Npt2a constructs indicated that Npt2a colocalizes with NHERF-1 and actin at or near the plasma membrane of the osteoclast and associates with ezrin, a linker protein associated with the actin cytoskeleton, likely via NHERF-1. Furthermore, we demonstrate by RT/PCR of osteoclast RNA and in situ hybridization that the type III Na/Picotransporter, PiT-1, is also expressed in mouse osteoclasts. To examine the cellular distribution of PiT-1, we infected mouse osteoclasts with a retroviral vector encoding PiT-1 fused to an epitope tag. PiT-1 colocalizes with actin and is present on the basolateral membrane of the polarized osteoclast, similar to that previously reported for Npt2a. Taken together, our data suggest that association of Npt2a with NHERF-1, ezrin, and actin, and of PiT-1 with actin, may be responsible for membrane sorting and regulation of these Na/Picotransporters in the osteoclast.


2001 ◽  
Vol 152 (5) ◽  
pp. 1007-1018 ◽  
Author(s):  
Christos G. Zervas ◽  
Stephen L. Gregory ◽  
Nicholas H. Brown

Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human β1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK–green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.


2006 ◽  
Vol 17 (12) ◽  
pp. 4937-4945 ◽  
Author(s):  
Peter M. Haggie ◽  
Jung Kyung Kim ◽  
Gergely L. Lukacs ◽  
A. S. Verkman

Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, generally not moving beyond 100–200 nm. However, CFTR became mobile over micrometer distances after 1) truncations of the carboxy terminus, which contains a C-terminal PDZ (PSD95/Dlg/ZO-1) binding motif; 2) blocking PDZ binding by C-terminal green fluorescent protein fusion; 3) disrupting CFTR association with actin by expression of a mutant EBP50/NHERF1 lacking its ezrin binding domain; or 4) skeletal disruption by latrunculin. CFTR also became mobile when the cytoskeletal adaptor protein binding capacity was saturated by overexpressing CFTR or its C terminus. Our data demonstrate remarkable and previously unrecognized immobilization of CFTR in the plasma membrane and provide direct evidence that C-terminal coupling to the actin skeleton via EBP50/ezrin is responsible for its immobility.


2005 ◽  
Vol 390 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Gianluca Bleve ◽  
Giuseppe Zacheo ◽  
Maria Stella Cappello ◽  
Franco Dellaglio ◽  
Francesco Grieco

GFP (green fluorescent protein) from Aequorea victoria was used as an in vivo reporter protein when fused to the N- and C-termini of the glycerol uptake protein 1 (Gup1p) of Saccharomyces cerevisiae. The subcellular localization and functional expression of biologically active Gup1–GFP chimaeras was monitored by confocal laser scanning and electron microscopy, thus supplying the first study of GUP1 dynamics in live yeast cells. The Gup1p tagged with GFP is a functional glycerol transporter localized at the plasma membrane and endoplasmic reticulum levels of induced cells. The factors involved in proper localization and turnover of Gup1p were revealed by expression of the Gup1p–GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaerical protein was targeted to the plasma membrane through a Sec6-dependent process; on treatment with glucose, it was endocytosed through END3 and targeted for degradation in the vacuole. Gup1p belongs to the list of yeast proteins rapidly down-regulated by changing the carbon source in the culture medium, in agreement with the concept that post-translational modifications triggered by glucose affect proteins of peripheral functions. The immunoelectron microscopy assays of cells expressing either Gup1–GFP or GFP–Gup1 fusions suggested the Gup1p membrane topology: the N-terminus lies in the periplasmic space, whereas its C-terminal tail has an intracellular location. An extra cytosolic location of the N-terminal tail is not generally predicted or determined in yeast membrane transporters.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2006 ◽  
Vol 17 (7) ◽  
pp. 3085-3094 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Peter Schweinsberg ◽  
...  

Caveolin is the major protein component required for the formation of caveolae on the plasma membrane. Here we show that trafficking of Caenorhabditis elegans caveolin-1 (CAV-1) is dynamically regulated during development of the germ line and embryo. In oocytes a CAV-1-green fluorescent protein (GFP) fusion protein is found on the plasma membrane and in large vesicles (CAV-1 bodies). After ovulation and fertilization the CAV-1 bodies fuse with the plasma membrane in a manner reminiscent of cortical granule exocytosis as described in other species. Fusion of CAV-1 bodies with the plasma membrane appears to be regulated by the advancing cell cycle, and not fertilization per se, because fusion can proceed in spe-9 fertilization mutants but is blocked by RNA interference–mediated knockdown of an anaphase-promoting complex component (EMB-27). After exocytosis, most CAV-1-GFP is rapidly endocytosed and degraded within one cell cycle. CAV-1 bodies in oocytes appear to be produced by the Golgi apparatus in an ARF-1–dependent, clathrin-independent, mechanism. Conversely endocytosis and degradation of CAV-1-GFP in embryos requires clathrin, dynamin, and RAB-5. Our results demonstrate that the distribution of CAV-1 is highly dynamic during development and provides new insights into the sorting mechanisms that regulate CAV-1 localization.


2007 ◽  
Vol 292 (5) ◽  
pp. F1303-F1313 ◽  
Author(s):  
Xianhua Yi ◽  
Richard Bouley ◽  
Herbert Y. Lin ◽  
Shaliha Bechoua ◽  
Tian-xiao Sun ◽  
...  

The vasopressin type 2 receptor (V2R) is a G protein-coupled receptor that plays a central role in renal water reabsorption. Termination of ligand (vasopressin) stimulation is an important physiological regulatory event, but few proteins that interact with the V2R during downregulation after vasopressin (VP) binding have been identified. Using yeast two-hybrid screening of a human kidney cDNA library, we show that a 100-kDa protein called ALG-2-interacting protein X (Alix) interacts with the last 29 amino acids of the V2R COOH terminus. This was confirmed by pull-down assays using a GST-V2R-COOH-tail fusion protein. Alix was immunolocalized in principal cells of the kidney, which also express the V2R. The function of the Alix-V2R interaction was studied by transfecting Alix into LLC-PK1 epithelial cells expressing V2R-green fluorescent protein (GFP). Under basal conditions, V2R-GFP localized mainly at the plasma membrane. On VP treatment, V2R-GFP was internalized into perinuclear vesicles in the nontransfected cells. In contrast, V2R-GFP fluorescence was virtually undetectable 2 h after exposure to VP in cells that coexpressed Alix. Western blotting using an anti-GFP antibody showed marked degradation of the V2R after 2 h in the presence of VP and Alix, a time point at which little or no degradation was detected in the absence of Alix. In contrast, little or no degradation of the parathyroid hormone receptor was detectable in the presence or absence of Alix and/or the PTH ligand. The VP-induced disappearance of V2R-GFP was abolished by chloroquine, a lysosomal degradation inhibitor, but not by MG132, a proteosome inhibitor. These data suggest that Alix increases the rate of lysosomal degradation of V2R and may play an important regulatory role in the VP response by modulating V2R downregulation.


2000 ◽  
Vol 11 (11) ◽  
pp. 3873-3883 ◽  
Author(s):  
Maryse Bailly ◽  
Jeffrey Wyckoff ◽  
Boumediene Bouzahzah ◽  
Ross Hammerman ◽  
Vonetta Sylvestre ◽  
...  

To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing.


Sign in / Sign up

Export Citation Format

Share Document