scholarly journals Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane

2002 ◽  
Vol 158 (2) ◽  
pp. 235-246 ◽  
Author(s):  
J.-C. Bourdon ◽  
J. Renzing ◽  
P.L. Robertson ◽  
K.N. Fernandes ◽  
D.P. Lane

p53 is a transcription factor that induces growth arrest or apoptosis in response to cellular stress. To identify new p53-inducible proapoptotic genes, we compared, by differential display, the expression of genes in spleen or thymus of normal and p53 nullizygote mice after γ-irradiation of whole animals. We report the identification and characterization of human and mouse Scotin homologues, a novel gene directly transactivated by p53. The Scotin protein is localized to the ER and the nuclear membrane. Scotin can induce apoptosis in a caspase-dependent manner. Inhibition of endogenous Scotin expression increases resistance to p53-dependent apoptosis induced by DNA damage, suggesting that Scotin plays a role in p53-dependent apoptosis. The discovery of Scotin brings to light a role of the ER in p53-dependent apoptosis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3222-3222
Author(s):  
Bruno A Cardoso ◽  
Helio Belo ◽  
Antonio Almeida

Abstract Background: The classical BCR-ABL-negative myeloproliferative neoplasms (MPN) are characterized by increased proliferation of hematopoietic precursors in the bone marrow resulting in an elevated number of terminally differentiated cells. Despite the recent description of JAK2 activating mutations and other mutations, these do not completely explain the pathophysiology and clinical heterogeneity of MPN. Epigenetic modifications, particularly histone acetylation, play pivotal roles in the pathogenesis of several hematological malignancies, and treatment of such disorders with histone deacetylase inhibitors results cell death and proliferation arrest. Importantly, epigenetic agents have proven to be effective in several hematological malignancies. Aims: HDAC inhibition has demonstrated some efficacy in patients with MPN. In order to investigate the effects of HDAC inhibitors in MPN, we analyzed the impact of Vorinostat on the cellular biology of MPN cell lines and primary bone marrow samples. Material and Methods: MPN bone marrow samples were collected at diagnosis following informed consent in the course of routine clinical laboratory tests. Mononuclear cells were isolated by gradient separation were used for culture experiments and lysed for RNA extraction. RNA extracted from MPN primary samples was used to synthetize cDNA and the transcript levels of genes associated with Apoptosis, Proliferation, Epigenetic modifications and several Signaling pathways were analyzed by quantitative-PCR. MPN primary cells and MPN derived cell lines were incubated with Vorinostat and at different time points the cells were harvest, lysed for gene expression analysis and stained with different antibodies, Annexin-V/PI and DCF-DA to analyze cellular differentiation, apoptosis and Reactive Oxygen Species (ROS) respectively. Results: We performed a targeted-genome wide screen and compared the transcript levels of a defined set of genes between normal bone marrow and MPN primary samples. We identified 9 genes (BIRC3, TNFRSF9, DLL4, IL1B, CDKN1A, FOSL1, CREL, SERPINB9 and EGR1) whose expression increased for at least 4 fold and 2 genes (HIP1 and DTX1) whose expression decreased by at least 0.5 fold in MPN patients relative to normal bone marrow samples. Interestingly, incubation of Vorinostat in MPN cell lines at physiological concentrations increases the expression of such genes, and also the expression of genes associated with apoptosis and growth arrest while decreasing the expression of genes associated with proliferation, growth arrest and JAK-STAT signaling pathway. Regarding cellular physiology, Vorinostat induces apoptosis in MPN cultured cell lines in a time- and dose-dependent manner. Furthermore, incubation of primary MPN bone marrow samples with Vorinostat induced apoptosis, blocked differentiation and also diminished ROS levels in a dose dependent manner. These effects were most marked in the monocytic lineage, a population which expresses the highest levels of ROS. Vorinostat also reduced the levels of GPA and CD61, markers of erythroid and megakaryocytic differentiation, respectively. Summary/Conclusions: Here, we show that Vorinostat incubation impairs MPN cellular differentiation and reduces ROS and cellular viability, possibly through the down-regulation of genes associated with cellular proliferation, particularly the JAK-STAT target genes, and up-regulation of genes important for apoptosis and growth arrest. Interestingly, the genes that we identified to be up-regulated in MPN primary samples relative to normal controls, are further increased by Vorinostat treatment, suggesting that these could act as potential biomarkers for Vorinostat effectiveness in the MPN context. Furthermore, these results hold therapeutic promise as Vorinostat reduced differentiation markers associated with Polycythemia Vera and Essential Thrombocytosis. The observation that Vorinostat is particularly effective against the monocytic lineage is interesting in the context of the recently described role of bone marrow monocytes in the pathogenesis of Polycythemia Vera in mouse models. Our results point towards the potential role of Vorinostat (and possibly other HDAC inhibitors) in the treatment of MPN. This potential would require clinical trials to investigate its efficacy. Disclosures Almeida: Celgene: Consultancy; Novartis: Consultancy; Amgen: Membership on an entity's Board of Directors or advisory committees; Shire: Membership on an entity's Board of Directors or advisory committees; Bristol-Meyer Squibb: Membership on an entity's Board of Directors or advisory committees.



2011 ◽  
Vol 16 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Chih-Wen Shu ◽  
Charitha Madiraju ◽  
Dayong Zhai ◽  
Kate Welsh ◽  
Paul Diaz ◽  
...  

Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators. Herein, the authors developed a fluorescence-based assay for measuring activity of the autophagy protease, autophagin-1(Atg4B). The assay employs a novel reporter substrate of Atg4B composed of a natural substrate (LC3B) fused to an assayable enzyme (PLA2) that becomes active upon cleavage by this cysteine protease. A high-throughput screening (HTS) assay was validated with excellent Z′ factor (>0.7), remaining robust for more than 5 h and suitable for screening of large chemical libraries. The HTS assay was validated by performing pilot screens with 2 small collections of compounds enriched in bioactive molecules ( n = 1280 for Lopac™ and 2000 for Spectrum™ library), yielding confirmed hit rates of 0.23% and 0.70%, respectively. As counterscreens, PLA2 and caspase-3 assays were employed to eliminate nonspecific inhibitors. In conclusion, the LC3B-PLA2 reporter assay provides a platform for compound library screening for identification and characterization of Atg4B-specific inhibitors that may be useful as tools for interrogating the role of autophagy in disease models.



2006 ◽  
Vol 74 (7) ◽  
pp. 3742-3755 ◽  
Author(s):  
Lakshmi Pillai ◽  
Jian Sha ◽  
Tatiana E. Erova ◽  
Amin A. Fadl ◽  
Bijay K. Khajanchi ◽  
...  

ABSTRACT Human diseases caused by species of Aeromonas have been classified into two major groups: septicemia and gastroenteritis. In this study, we reported the molecular and functional characterization of a new virulence factor, ToxR-regulated lipoprotein, or TagA, from a diarrheal isolate, SSU, of Aeromonas hydrophila. The tagA gene of A. hydrophila exhibited 60% identity with that of a recently identified stcE gene from Escherichia coli O157:H7, which encoded a protein (StcE) that provided serum resistance to the bacterium and prevented erythrocyte lysis by controlling classical pathway of complement activation by cleaving the complement C1-esterase inhibitor (C1-INH). We purified A. hydrophila TagA as a histidine-tagged fusion protein (rTagA) from E. coli DE3 strain using a T7 promoter-based pET30 expression vector and nickel affinity column chromatography. rTagA cleaved C1-INH in a time-dependent manner. The tagA isogenic mutant of A. hydrophila, unlike its corresponding wild-type (WT) or the complemented strain, was unable to cleave C1-INH, which is required to potentiate the C1-INH-mediated lysis of host and bacterial cells. We indeed demonstrated colocalization of C1-INH and TagA on the bacterial surface by confocal fluorescence microscopy, which ultimately resulted in increased serum resistance of the WT bacterium. Likewise, we delineated the role of TagA in contributing to the enhanced ability of C1-INH to inhibit the classical complement-mediated lysis of erythrocytes. Importantly, we provided evidence that the tagA mutant was significantly less virulent in a mouse model of infection (60%) than the WT bacterium at two 50% lethal doses, which resulted in 100% mortality within 48 h. Taken together, our data provided new information on the role of TagA as a virulence factor in bacterial pathogenesis. This is the first report of TagA characterization from any species of Aeromonas.



2002 ◽  
Vol 301 (2) ◽  
pp. 705-713 ◽  
Author(s):  
Fang L. Zhang ◽  
Lin Luo ◽  
Eric Gustafson ◽  
Kyle Palmer ◽  
Xudong Qiao ◽  
...  


2006 ◽  
Vol 394 (3) ◽  
pp. 575-579 ◽  
Author(s):  
Sergey V. Novoselov ◽  
Deame Hua ◽  
Alexey V. Lobanov ◽  
Vadim N. Gladyshev

Sec (selenocysteine) is a rare amino acid in proteins. It is co-translationally inserted into proteins at UGA codons with the help of SECIS (Sec insertion sequence) elements. A full set of selenoproteins within a genome, known as the selenoproteome, is highly variable in different organisms. However, most of the known eukaryotic selenoproteins are represented in the mammalian selenoproteome. In addition, many of these selenoproteins have cysteine orthologues. Here, we describe a new selenoprotein, designated Fep15, which is distantly related to members of the 15 kDa selenoprotein (Sep15) family. Fep15 is absent in mammals, can be detected only in fish and is present in these organisms only in the selenoprotein form. In contrast with other members of the Sep15 family, which contain a putative active site composed of Sec and cysteine, Fep15 has only Sec. When transiently expressed in mammalian cells, Fep15 incorporated Sec in an SECIS- and SBP2 (SECIS-binding protein 2)-dependent manner and was targeted to the endoplasmic reticulum by its N-terminal signal peptide. Phylogenetic analyses of Sep15 family members suggest that Fep15 evolved by gene duplication.



2009 ◽  
Vol 191 (13) ◽  
pp. 4082-4096 ◽  
Author(s):  
Nicholas J. Shikuma ◽  
Fitnat H. Yildiz

ABSTRACT Vibrio cholerae is a facultative human pathogen. In its aquatic habitat and as it passes through the digestive tract, V. cholerae must cope with fluctuations in salinity. We analyzed the genome-wide transcriptional profile of V. cholerae grown at different NaCl concentrations and determined that the expression of compatible solute biosynthesis and transporter genes, virulence genes, and genes involved in adhesion and biofilm formation is differentially regulated. We determined that salinity modulates biofilm formation, and this response was mediated through the transcriptional regulators VpsR and VpsT. Additionally, a transcriptional regulator controlling an osmolarity adaptation response was identified. This regulator, OscR (osmolarity controlled regulator), was found to modulate the transcription of genes involved in biofilm matrix production and motility in a salinity-dependent manner. oscR mutants were less motile and exhibited enhanced biofilm formation only under low-salt conditions.



2010 ◽  
Vol 97 (1) ◽  
pp. S70-S71
Author(s):  
Busser Benoît ◽  
Lucie Sancey ◽  
Véronique Josserand ◽  
Saadi Khochbin ◽  
Jean-Luc Coll ◽  
...  


2019 ◽  
Vol 20 (8) ◽  
pp. 1856 ◽  
Author(s):  
Shengming Sun ◽  
Ying Wu ◽  
Hongtuo Fu ◽  
Xianping Ge ◽  
Hongzheng You ◽  
...  

Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.



2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nicole F. Robichaud ◽  
Jeanette Sassine ◽  
Margaret J. Beaton ◽  
Vett K. Lloyd

Daphnids are fresh water microcrustaceans, many of which follow a cyclically parthenogenetic life cycle. Daphnia species have been well studied in the context of ecology, toxicology, and evolution, but their epigenetics remain largely unexamined even though sex determination, the production of sexual females and males, and distinct adult morphological phenotypes, are determined epigenetically. Here, we report on the characterization of histone modifications in Daphnia. We show that a number of histone H3 and H4 modifications are present in Daphnia embryos and histone H3 dimethylated at lysine 4 (H3K4me2) is present nonuniformly in the nucleus in a cell cycle-dependent manner. In addition, this histone modification, while present in blastula and gastrula cells as well as the somatic cells of adults, is absent or reduced in oocytes and nurse cells. Thus, the epigenetic repertoire of Daphnia includes modified histones and as these epigenetic forces act on a genetically homogeneous clonal population Daphnia offers an exceptional tool to investigate the mechanism and role of epigenetics in the life cycle and development of an ecologically important species.



Sign in / Sign up

Export Citation Format

Share Document