scholarly journals Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol

2003 ◽  
Vol 160 (7) ◽  
pp. 1115-1127 ◽  
Author(s):  
David G. Breckenridge ◽  
Marina Stojanovic ◽  
Richard C. Marcellus ◽  
Gordon C. Shore

Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731–6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8–induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.

Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2713-2723 ◽  
Author(s):  
Emanuela Rosati ◽  
Rita Sabatini ◽  
Giuliana Rampino ◽  
Filomena De Falco ◽  
Mauro Di Ianni ◽  
...  

Abstract A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 and involving caspase-8 and -3, plays an important role in spontaneous B-CLL cell apoptosis. ER stress-induced apoptosis in B-CLL cells also involves CHOP/GADD153 up-regulation, increased JNK1/2 phosphorylation, and caspase-8–mediated cleavage of Bap31 to Bap20, known to propagate apoptotic signals from ER to mitochondria. In ex vivo B-CLL cells, some apoptotic events associated with mitochondrial pathway also occur, including mitochondrial cytochrome c release and caspase-9 processing. However, pharmacologic inhibition studies show that caspase-9 plays a minor role in B-CLL cell apoptosis. ER stress also triggers survival signals in B-CLL cells by increasing BiP/GRP78 expression. Manipulating ER signaling by siRNA down-regulation of BiP/GRP78 or treating B-CLL cells with 2 well-known ER stress-inducers, tunicamycin and thapsigargin, increases their apoptosis. Overall, our findings show that ER triggers an essential pathway for B-CLL cell apoptosis and suggest that genetic and pharmacologic manipulation of ER signaling could represent an important therapeutic strategy.


2004 ◽  
Vol 286 (6) ◽  
pp. H2280-H2286 ◽  
Author(s):  
Yimin Qin ◽  
Terry L. Vanden Hoek ◽  
Kim Wojcik ◽  
Travis Anderson ◽  
Chang-Qing Li ◽  
...  

We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 ± 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH2F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Maria Cristina Marchetti ◽  
Barbara Di Marco ◽  
Grazia Cifone ◽  
Graziella Migliorati ◽  
Carlo Riccardi

Glucocorticoid hormones (GCHs) regulate normal and neoplastic lymphocyte development by exerting antiproliferative and/or apoptotic effects. We have previously shown that dexamethasone (DEX)–activated thymocyte apoptosis requires a sequence of events including interaction with the glucocorticoid receptor (GR), phosphatidylinositol-specific phospholipase C (PI-PLC), and acidic sphingomyelinase (aSMase) activation. We analyzed the mechanisms of GCH-activated apoptosis by focusing on GR-associated Src kinase, cytochrome c release, and caspase-8, -9, and -3 activation. We show here that PI-PLC binds to GR-associated Src kinase, as indicated by coimmunoprecipitation experiments. Moreover, DEX treatment induces PI-PLC phosphorylation and activation. DEX-induced PI-PLC phosphorylation, activation, and apoptosis are inhibited by PP1, a Src kinase inhibitor, thus suggesting that Src-mediated PI-PLC activation is involved in DEX-induced apoptosis. Caspase-9, -8, and -3 activation and cytochrome c release can be detected 1 to 2 hours after DEX treatment. Caspase-9 inhibition does not counter cytochrome crelease, caspase-8 and caspase-3 activation, and apoptosis. Caspase-8 inhibition counters cytochrome c release, caspase-9 and caspase-3 activation, and apoptosis, thus suggesting that caspase-8 inhibitor can directly inhibit caspase-9 and/or that DEX-induced caspase-8 activation is upstream to mitochondria and can regulate caspase-3 directly or through cytochrome c release and the consequent caspase-9/caspase-3 activation. DEX-induced caspase-8 activation, like ceramide-induced caspase-8 activation, correlates with the formation of Fas-associated death domain protein (FADD)/caspase-8 complex. Caspase-8 activation is countered by the inhibition of macromolecular synthesis and of Src kinase, PI-PLC, and aSMase activation, suggesting it is downstream in the DEX-activated apoptotic pathway of thymocytes.


2011 ◽  
Vol 71 (10) ◽  
pp. 3625-3634 ◽  
Author(s):  
Hua Li ◽  
Peng Wang ◽  
Quanhong Sun ◽  
Wen-Xing Ding ◽  
Xiao-Ming Yin ◽  
...  

2004 ◽  
Vol 286 (3) ◽  
pp. G479-G490 ◽  
Author(s):  
Sujoy Bhattacharya ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-α/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by α-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-α/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-α/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-α/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-α/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-α/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-α/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-α/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.


Oncogene ◽  
2002 ◽  
Vol 21 (17) ◽  
pp. 2623-2633 ◽  
Author(s):  
Qin He ◽  
Dong Ik Lee ◽  
Rong Rong ◽  
Myounghee Yu ◽  
Xiuquan Luo ◽  
...  

Author(s):  
Ying Tian ◽  
Liang Wang ◽  
Zhiqiang Qiu ◽  
Yulun Xu ◽  
Rongrong Hua

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on Caspase-8 and -9 but not Caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and Binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-Bip-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links are needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.


Sign in / Sign up

Export Citation Format

Share Document