scholarly journals BPAG1n4 is essential for retrograde axonal transport in sensory neurons

2003 ◽  
Vol 163 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Jia-Jia Liu ◽  
Jianqing Ding ◽  
Anthony S. Kowal ◽  
Timothy Nardine ◽  
Elizabeth Allen ◽  
...  

Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from yeast two-hybrid screening, blot overlay binding assays, and coimmunoprecipitations demonstrate that BPAG1n4 interacts directly with dynactin p150Glued through its unique ezrin/radixin/moesin domain. Studies using double immunofluorescent microscopy and ultrastructural analysis reveal physiological colocalization of BPAG1n4 with dynactin/dynein. Disruption of the interaction between BPAG1n4 and dynactin results in severe defects in retrograde axonal transport. We conclude that BPAG1n4 plays an essential role in retrograde axonal transport in sensory neurons. These findings might advance our understanding of pathogenesis of axonal degeneration and neuronal death.

2007 ◽  
Vol 18 (11) ◽  
pp. 4317-4326 ◽  
Author(s):  
Hiroshi Qadota ◽  
Kristina B. Mercer ◽  
Rachel K. Miller ◽  
Kozo Kaibuchi ◽  
Guy M. Benian

By yeast two-hybrid screening, we found three novel interactors (UNC-95, LIM-8, and LIM-9) for UNC-97/PINCH in Caenorhabditis elegans. All three proteins contain LIM domains that are required for binding. Among the three interactors, LIM-8 and LIM-9 also bind to UNC-96, a component of sarcomeric M-lines. UNC-96 and LIM-8 also bind to the C-terminal portion of a myosin heavy chain (MHC), MHC A, which resides in the middle of thick filaments in the proximity of M-lines. All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding assays using purified proteins. All three novel UNC-97 interactors are expressed in body wall muscle and by antibodies localize to M-lines. Either a decreased or an increased dosage of UNC-96 results in disorganization of thick filaments. Our previous studies showed that UNC-98, a C2H2 Zn finger protein, acts as a linkage between UNC-97, an integrin-associated protein, and MHC A in myosin thick filaments. In this study, we demonstrate another mechanism by which this linkage occurs: from UNC-97 through LIM-8 or LIM-9/UNC-96 to myosin.


2021 ◽  
pp. 1-58
Author(s):  
Jin-wu Zhou ◽  
Man Zhao ◽  
Wen-liang Rang ◽  
Xiao-yan Zhang ◽  
Zhen-ming Liu ◽  
...  

Background: The toxicity of excessive glutamate release has been implicated in various acute and chronic neurodegenerative conditions. Vesicular glutamate transporters (VGLUTs) are the major mediators for the uptake of glutamate into synaptic vesicles. However, the dynamics and mechanism of this process in glutamatergic neurons are still largely unknown. Objective: This study aimed to investigate the candidate protein partners of VGLUT1 and their regulatory roles in the vesicles in rat brain. Methods: Pull down assay, co-immunoprecipitation assay, or split-ubiquitin membrane yeast two hybrid screening coupled with nanoRPLC-MS/MS were used to identify the candidate protein partners of VGLUT1 in the vesicles in rat brain. The in vitro and in vivo models were used to test effects of AβPP, Atp6ap2, Gja1, and Synataxin on VGLUT1 expression. Results: A total of 255 and 225 proteins and 172 known genes were identified in the pull down assay, co-immunoprecipitation assay, or split-ubiquitin yeast two-hybrid screening respectively. The physiological interactions of SV2A, Syntaxin 12, Gja1, AβPP, and Atp6ap2 to VGLUT1 were further confirmed. Knockdown of Atp6ap2, Gja1, and Synataxin increased VGLUT1 mRNA expression and only knockdown of AβPP increased both mRNA and protein levels of VGLUT1 in PC12 cells. The regulatory function of AβPP on VGLUT1 expression was further confirmed in the in vitro and in vivo models. Conclusion: These results elucidate that the AβPP and VGLUT1 interacts at vesicular level and AβPP plays a role in the regulation of VGLUT1 expression which is essential for maintaining vesicular activities.


2021 ◽  
Author(s):  
Bohm Lee ◽  
Yeonsoo Oh ◽  
Eunhye Cho ◽  
Aaron DiAntonio ◽  
Valeria Cavalli ◽  
...  

DLK is a key regulator of axon regeneration and degeneration in response to neuronal injury. To understand the molecular mechanisms controlling the DLK function, we performed yeast two-hybrid screening analysis and identified FKBPL as a DLK-binding protein that bound to the kinase domain and inhibited the kinase enzymatic activity of DLK. FKBPL regulated DLK stability through ubiquitin-dependent DLK degradation. We tested other members in the FKBP protein family and found that FKBP8 also induced DLK degradation as FKBPL did. We found that Lysine 271 residue in the kinase domain of DLK was a major site of ubiquitination and SUMO3-conjugation and responsible for FKBP8-mediated degradation. In vivo overexpression of FKBP8 delayed progression of axon degeneration and neuronal death following axotomy in sciatic and optic nerves, respectively, although axon regeneration efficiency was not enhanced. This research identified FKBPL and FKBP8 as new DLK-interacting proteins that regulated DLK stability by MG-132 or bafilomycin A1-sensitive protein degradation.


2019 ◽  
Author(s):  
Bo Zhang ◽  
Ömür Y. Tastan ◽  
Xian Zhou ◽  
Chen-Jun Guo ◽  
Xuyang Liu ◽  
...  

AbstractCompartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, Δ1-pyrroline-5-carboxylate synthase (P5CS). Using Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.


2008 ◽  
Vol 412 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Cristián A. Quintero ◽  
Javier Valdez-Taubas ◽  
Mariana L. Ferrari ◽  
Sergio D. Haedo ◽  
Hugo J. F. Maccioni

GalT2 (UDP-Gal:GA2/GM2/GD2 β-1,3-galactosyltransferase) is a Golgi-resident type II membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NeuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 β1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSV-G (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.


1998 ◽  
Vol 51 (10) ◽  
pp. 936-944 ◽  
Author(s):  
SE WON KI ◽  
KOJI KASAHARA ◽  
HO JEONG KWON ◽  
JUN EISHIMA ◽  
KAZUTOH TAKESAKO ◽  
...  

Author(s):  
Orsolya Frittmann ◽  
Vamsi K Gali ◽  
Miklos Halmai ◽  
Robert Toth ◽  
Zsuzsanna Gyorfy ◽  
...  

Abstract DNA damages that hinder the movement of the replication complex can ultimately lead to cell death. To avoid that, cells possess several DNA damage bypass mechanisms. The Rad18 ubiquitin ligase controls error-free and mutagenic pathways that help the replication complex to bypass DNA lesions by monoubiquitylating PCNA at stalled replication forks. In Saccharomyces cerevisiae, two of the Rad18 governed pathways are activated by monoubiquitylated PCNA and they involve translesion synthesis polymerases, whereas a third pathway needs subsequent polyubiquitylation of the same PCNA residue by another ubiquitin ligase the Rad5 protein, and it employs template switching. The goal of this study was to dissect the regulatory role of the multidomain Rad18 in DNA damage bypass using a structure-function based approach. Investigating deletion and point mutant RAD18 variants in yeast genetic and yeast two-hybrid assays we show that the Zn-finger of Rad18 mediates its interaction with Rad5, and the N-terminal adjacent region is also necessary for Rad5 binding. Moreover, results of the yeast two-hybrid and in vivo ubiquitylation experiments raise the possibility that direct interaction between Rad18 and Rad5 might not be necessary for the function of the Rad5 dependent pathway. The presented data also reveal that yeast Rad18 uses different domains to mediate its association with itself and with Rad5. Our results contribute to better understanding of the complex machinery of DNA damage bypass pathways.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


2001 ◽  
Vol 183 (4) ◽  
pp. 1423-1433 ◽  
Author(s):  
Susan R. Heimer ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.


Sign in / Sign up

Export Citation Format

Share Document