Proteome Profiling Identified Amyloid-β Protein Precursor as a Novel Binding Partner and Modulator of VGLUT1

2021 ◽  
pp. 1-58
Author(s):  
Jin-wu Zhou ◽  
Man Zhao ◽  
Wen-liang Rang ◽  
Xiao-yan Zhang ◽  
Zhen-ming Liu ◽  
...  

Background: The toxicity of excessive glutamate release has been implicated in various acute and chronic neurodegenerative conditions. Vesicular glutamate transporters (VGLUTs) are the major mediators for the uptake of glutamate into synaptic vesicles. However, the dynamics and mechanism of this process in glutamatergic neurons are still largely unknown. Objective: This study aimed to investigate the candidate protein partners of VGLUT1 and their regulatory roles in the vesicles in rat brain. Methods: Pull down assay, co-immunoprecipitation assay, or split-ubiquitin membrane yeast two hybrid screening coupled with nanoRPLC-MS/MS were used to identify the candidate protein partners of VGLUT1 in the vesicles in rat brain. The in vitro and in vivo models were used to test effects of AβPP, Atp6ap2, Gja1, and Synataxin on VGLUT1 expression. Results: A total of 255 and 225 proteins and 172 known genes were identified in the pull down assay, co-immunoprecipitation assay, or split-ubiquitin yeast two-hybrid screening respectively. The physiological interactions of SV2A, Syntaxin 12, Gja1, AβPP, and Atp6ap2 to VGLUT1 were further confirmed. Knockdown of Atp6ap2, Gja1, and Synataxin increased VGLUT1 mRNA expression and only knockdown of AβPP increased both mRNA and protein levels of VGLUT1 in PC12 cells. The regulatory function of AβPP on VGLUT1 expression was further confirmed in the in vitro and in vivo models. Conclusion: These results elucidate that the AβPP and VGLUT1 interacts at vesicular level and AβPP plays a role in the regulation of VGLUT1 expression which is essential for maintaining vesicular activities.

2019 ◽  
Author(s):  
Bo Zhang ◽  
Ömür Y. Tastan ◽  
Xian Zhou ◽  
Chen-Jun Guo ◽  
Xuyang Liu ◽  
...  

AbstractCompartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, Δ1-pyrroline-5-carboxylate synthase (P5CS). Using Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.


2008 ◽  
Vol 412 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Cristián A. Quintero ◽  
Javier Valdez-Taubas ◽  
Mariana L. Ferrari ◽  
Sergio D. Haedo ◽  
Hugo J. F. Maccioni

GalT2 (UDP-Gal:GA2/GM2/GD2 β-1,3-galactosyltransferase) is a Golgi-resident type II membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NeuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 β1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSV-G (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.


2007 ◽  
Vol 18 (11) ◽  
pp. 4317-4326 ◽  
Author(s):  
Hiroshi Qadota ◽  
Kristina B. Mercer ◽  
Rachel K. Miller ◽  
Kozo Kaibuchi ◽  
Guy M. Benian

By yeast two-hybrid screening, we found three novel interactors (UNC-95, LIM-8, and LIM-9) for UNC-97/PINCH in Caenorhabditis elegans. All three proteins contain LIM domains that are required for binding. Among the three interactors, LIM-8 and LIM-9 also bind to UNC-96, a component of sarcomeric M-lines. UNC-96 and LIM-8 also bind to the C-terminal portion of a myosin heavy chain (MHC), MHC A, which resides in the middle of thick filaments in the proximity of M-lines. All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding assays using purified proteins. All three novel UNC-97 interactors are expressed in body wall muscle and by antibodies localize to M-lines. Either a decreased or an increased dosage of UNC-96 results in disorganization of thick filaments. Our previous studies showed that UNC-98, a C2H2 Zn finger protein, acts as a linkage between UNC-97, an integrin-associated protein, and MHC A in myosin thick filaments. In this study, we demonstrate another mechanism by which this linkage occurs: from UNC-97 through LIM-8 or LIM-9/UNC-96 to myosin.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


2001 ◽  
Vol 183 (4) ◽  
pp. 1423-1433 ◽  
Author(s):  
Susan R. Heimer ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rebecca J Steagall ◽  
Fang Hua ◽  
Mahesh Thirunazukarasu ◽  
Lijun Zhan ◽  
Chuanfu Li ◽  
...  

We have previously shown that HspA12B, a member of HspA70 family subfamily 12, is a novel angiogenesis regulator that is preferentially expressed in endothelial cells (ECs) and required for angiogenesis in vitro . The mechanism by which HspA12B regulates angiogenesis, however, is unknown. In this study we identified AKAP12/SSeCKS as a HSPA12B-interacting protein through a yeast two-hybrid screening and confirmed the interaction by co-immunoprecipitation and co-localization. We observed that HspA12B negatively regulated the expression of AKAP12/SSeCKS, a cancer metastasis repressor that inhibits VEGF expression and angiogen-esis. In HUVEC, HspA12B knockdown increased AKAP12 levels, decreased VEGF by more than 75%, and down-regulated Akt and pAkt; whereas HspA12B over expression decreased AKAP12 and more than doubled VEGF levels. We further identified a 32-AA domain in AKAP12 that was capable of interacting with HspA12B. Overexpression of this 32-AA domain in HUVEC disrupted the HspA12B-AKAP12 interaction and decreased VEGF expression by more than 70%, suggesting the importance of HspA12B-AKAP12 interaction in regulating VEGF. We also observed that HspA12B expression was increased more than 2 folds in ECs by hypoxia or shearing stress, and induced in ischemic rat heart. Inhibition of HspA12B abolished hypoxia-induced tubule formation. Adeno-HspA12B promoted angiogenesis in DIVAA assay. We concluded that this is the first evidence that HspA12B promotes angiogenesis through regulating VEGF by way of suppressing AKAP12. Our finding is the first example of an EC-specific molecular chaperone acting as the regulator of angiogenesis.


1996 ◽  
Vol 16 (10) ◽  
pp. 5857-5864 ◽  
Author(s):  
J Han ◽  
P Sabbatini ◽  
E White

The E1B 19-kilodalton protein (19K protein) is a potent apoptosis inhibitor and the adenovirus homolog of Bcl-2 (E. White, Genes Dev. 10:1-15, 1996). To obtain a better understanding of the biochemical mechanism by which the E1B 19K protein regulates apoptosis, proteins that interact with 19K have been identified; one of these is Bax (J. Han, P. Sabbatini, D. Perez, L. Rao, D. Mohda, and E. White, Genes Dev. 10:461-477, 1996), and another is Bak (S. N. Farrow, J. H. M. White, I. Martinou, T. Raven, K.-T. Pun, C. J. Grinham, J.-C. Martinou, and R. Brown, Nature (London) 374:731-733, 1995). Bax and Bak are Bcl-2 family members which contain Bcl-2 homology regions 1, 2, and 3 (BH1, BH2, and BH3), which interact with E1B 19K and Bcl-2 and promote apoptosis. Like Bax and Bak, Nbk was cloned from a yeast two-hybrid screen for proteins that interact with E1B 19K. Nbk contained BH3 but not BH1 or BH2. It also interacted with Bcl-2 but not with Bax. Both Bcl-2 and E1B 19K interacted with Nbk in vitro, and this interaction was highly specific. In vivo, the Nbk and E1B 19K proteins may colocalize with cytoplasmic and nuclear membranes. Nbk expression functionally antagonized 19K-mediated inhibition of apoptotic cell death and completely prevented transformation by E1A and E1B 19K. Nbk was sufficient for induction of apoptosis in the presence of mutant p53 and thus low levels of Bax, suggesting that Nbk functions independently of Bax to induce apoptosis. Nbk may therefore represent a novel death regulator which contains only a BH3 that interacts with and antagonizes apoptosis inhibitors such as the E1B 19K protein.


2001 ◽  
Vol 276 (15) ◽  
pp. 11980-11987 ◽  
Author(s):  
Steven A. Haney ◽  
Elizabeth Glasfeld ◽  
Cynthia Hale ◽  
David Keeney ◽  
Zhizhen He ◽  
...  

The recruitment of ZipA to the septum by FtsZ is an early, essential step in cell division inEscherichia coli. We have used polymerase chain reaction-mediated random mutagenesis in the yeast two-hybrid system to analyze this interaction and have identified residues within a highly conserved sequence at the C terminus of FtsZ as the ZipA binding site. A search for suppressors of a mutation that causes a loss of interaction (ftsZD373G) identified eight different changes at two residues within this sequence.In vitro, wild type FtsZ interacted with ZipA with a high affinity in an enzyme-linked immunosorbent assay, whereas FtsZD373Gfailed to interact. Two mutant proteins examined restored this interaction significantly.In vivo, the alleles tested are significantly more toxic than the wild typeftsZand cannot complement a deletion. We have shown that a fusion, which encodes the last 70 residues of FtsZ in the two-hybrid system, is sufficient for the interaction with FtsA and ZipA. However, when the wild type sequence is compared with one that encodes FtsZD373G, no interaction was seen with either protein. Mutations surrounding Asp-373 differentially affected the interactions of FtsZ with ZipA and FtsA, indicating that these proteins bind the C terminus of FtsZ differently.


Sign in / Sign up

Export Citation Format

Share Document