scholarly journals Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy

2007 ◽  
Vol 179 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Sibylle Jablonka ◽  
Marcus Beck ◽  
Barbara Dorothea Lechner ◽  
Christine Mayer ◽  
Michael Sendtner

Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced β-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)–deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones. These defects also correlate with a reduced frequency of local Ca2+ transients. In contrast, global spontaneous excitability measured in cell bodies and proximal axons is not reduced. Stimulation of Smn production from the transgenic SMN2 gene by cyclic adenosine monophosphate restores Cav2.2 accumulation and excitability. This may lead to the development of new therapies for SMA that are not focused on enhancing motoneuron survival but instead investigate restoration of growth cone excitability and function.

Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 688-693 ◽  
Author(s):  
Nikolai A. Naryshkin ◽  
Marla Weetall ◽  
Amal Dakka ◽  
Jana Narasimhan ◽  
Xin Zhao ◽  
...  

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.


Neurology ◽  
2006 ◽  
Vol 66 (7) ◽  
pp. 1067-1073 ◽  
Author(s):  
C. J. Sumner ◽  
S. J. Kolb ◽  
G. G. Harmison ◽  
N. O. Jeffries ◽  
K. Schadt ◽  
...  

Background: Clinical trials of drugs that increase SMN protein levels in vitro are currently under way in patients with spinal muscular atrophy.Objective: To develop and validate measures of SMN mRNA and protein in peripheral blood and to establish baseline SMN levels in a cohort of controls, carriers, and patients of known genotype, which could be used to follow response to treatment.Methods: SMN1 and SMN2 gene copy numbers were determined in blood samples collected from 86 subjects. Quantitative reverse transcription PCR was used to measure blood levels of SMN mRNA with and without exon 7. A cell immunoassay was used to measure blood levels of SMN protein.Results: Blood levels of SMN mRNA and protein were measured with high reliability. There was little variation in SMN levels in individual subjects over a 5-week period. Levels of exon 7-containing SMN mRNA and SMN protein correlated with SMN1 and SMN2 gene copy number. With the exception of type I SMA, there was no correlation between SMN levels and disease severity.Conclusion: SMN mRNA and protein levels can be reliably measured in the peripheral blood and used during clinical trials in spinal muscular atrophy, but these levels do not necessarily predict disease severity.


2007 ◽  
Vol 176 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Jianzhong Han ◽  
Liang Han ◽  
Priyanka Tiwari ◽  
Zhexing Wen ◽  
James Q. Zheng

The second messenger cyclic adenosine monophosphate (cAMP) plays a pivotal role in axonal growth and guidance, but its downstream mechanisms remain elusive. In this study, we report that type II protein kinase A (PKA) is highly enriched in growth cone filopodia, and this spatial localization enables the coupling of cAMP signaling to its specific effectors to regulate guidance responses. Disrupting the localization of PKA to filopodia impairs cAMP-mediated growth cone attraction and prevents the switching of repulsive responses to attraction by elevated cAMP. Our data further show that PKA targets protein phosphatase-1 (PP1) through the phosphorylation of a regulatory protein inhibitor-1 (I-1) to promote growth cone attraction. Finally, we find that I-1 and PP1 mediate growth cone repulsion induced by myelin-associated glycoprotein. These findings demonstrate that the spatial localization of type II PKA to growth cone filopodia plays an important role in the regulation of growth cone motility and guidance by cAMP.


Genetics ◽  
1972 ◽  
Vol 70 (1) ◽  
pp. 175-180
Author(s):  
LaDonna Immken ◽  
David Apirion

ABSTRACT 3″,5″ cyclic-AMP (cAMP) will stimulate the rate of tryptophanase synthesis in Escherichia coli cultures induced with tryptophan. Adding cAMP after the initiation of messenger RNA synthesis was blocked by rifampicin, did not stimulate tryptophanase synthesis. This indicates that cAMP acts at initiation of either transcription or translation and not at the level of chain elongation of either the messenger or the polypeptide chain.


2019 ◽  
Vol 102 (4) ◽  
pp. 963-974
Author(s):  
Hanbin Zhang ◽  
Feilong Chen ◽  
Heling Dong ◽  
Minyu Xie ◽  
Huan Zhang ◽  
...  

Abstract F-box and WD-40 domain protein 7 (Fbxw7) is a component of the Skp1-Cdc53/Cullin-F-box-protein complex (SCF/β-TrCP), which is an E3 ubiquitin ligase that mediates protein degradation. This complex has recently been shown to negatively regulate spermatogonial stem cell self-renewal; however, its roles in Sertoli cell (SC) proliferation, differentiation, and function remain to be established. In this study, we generated conditional mutant mice with SC-specific deletion of Fbxw7 via the Cre-loxP system. Fbxw7 deficiency in SCs impaired testis development, which is characterized by age-dependent tubular atrophy, excessive germ cell loss, and spermatogenic arrest, and the mutant males were infertile at 7 months old. Fbxw7 ablation also compromised cytoskeletal organization and cell polarity of SCs, as well as integrity of the blood-testis barrier. In addition, the transcript levels of cell markers for germ cells, Leydig cells, and SCs were significantly decreased in Fbxw7 mutant mice. Importantly, protein levels of GATA-4, a transcription factor that plays a crucial role in SC maturation and testis development, were progressively decreased in control SCs after postnatal day 14, whereas levels were aberrantly elevated in Fbxw7-deleted SCs. Interestingly, the Gata-4 messenger RNA levels remained stable following Fbxw7 deletion. Fbxw7 silencing in SCs also induced progressive Leydig cell inefficiency and testosterone insufficiency. Collectively, these results demonstrate that Fbxw7 expression is required for SC maturation and function, potentially through degradation of GATA-4, to support pubertal testis development and spermatogenesis.


2018 ◽  
Vol 27 (16) ◽  
pp. 2851-2862 ◽  
Author(s):  
Ewout J N Groen ◽  
Elena Perenthaler ◽  
Natalie L Courtney ◽  
Crispin Y Jordan ◽  
Hannah K Shorrock ◽  
...  

2005 ◽  
Vol 25 (13) ◽  
pp. 5543-5551 ◽  
Author(s):  
Lili Wan ◽  
Daniel J. Battle ◽  
Jeongsik Yong ◽  
Amelie K. Gubitz ◽  
Stephen J. Kolb ◽  
...  

ABSTRACT Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.


2018 ◽  
Vol 29 (2) ◽  
pp. 96-110 ◽  
Author(s):  
Kelsey M. Gray ◽  
Kevin A. Kaifer ◽  
David Baillat ◽  
Ying Wen ◽  
Thomas R. Bonacci ◽  
...  

SMN protein levels inversely correlate with the severity of spinal muscular atrophy. The SCFSlmbE3 ligase complex interacts with a degron embedded within the C-terminal self-oligomerization domain of SMN. The findings elucidate a model whereby accessibility of the SMN degron is regulated by self-multimerization.


Sign in / Sign up

Export Citation Format

Share Document