scholarly journals Switching of membrane organelles between cytoskeletal transport systems is determined by regulation of the microtubule-based transport

2007 ◽  
Vol 179 (4) ◽  
pp. 635-641 ◽  
Author(s):  
Boris M. Slepchenko ◽  
Irina Semenova ◽  
Ilya Zaliapin ◽  
Vladimir Rodionov

Intracellular transport of membrane organelles occurs along microtubules (MTs) and actin filaments (AFs). Although transport along each type of the cytoskeletal tracks is well characterized, the switching between the two types of transport is poorly understood because it cannot be observed directly in living cells. To gain insight into the regulation of the switching of membrane organelles between the two major transport systems, we developed a novel approach that combines live cell imaging with computational modeling. Using this approach, we measured the parameters that determine how fast membrane organelles switch back and forth between MTs and AFs (the switching rate constants) and compared these parameters during different signaling states. We show that regulation involves a major change in a single parameter: the transferring rate from AFs onto MTs. This result suggests that MT transport is the defining factor whose regulation determines the choice of the cytoskeletal tracks during the transport of membrane organelles.

2003 ◽  
Vol 25 (3) ◽  
pp. 15-17
Author(s):  
David J. Stephens

Microscopy has been at the core of cell biology research ever since the coining of the term ‘cell’ by Robert Hooke in the 17th Century1. For many years, it has been possible to gain insight into ‘steady-state’ cellular function from the analysis of fixed samples, but it is only relatively recently that imaging of living cells has become a widely used tool to support biochemical and electron microscopy studies. Membrane traffic research, which by its very nature is a highly dynamics process, has benefited hugely from the ability to image specific processes in living cells and tissues.


2008 ◽  
Vol 180 (2) ◽  
pp. 427-441 ◽  
Author(s):  
Angélique Millon-Frémillon ◽  
Daniel Bouvard ◽  
Alexei Grichine ◽  
Sandra Manet-Dupé ◽  
Marc R. Block ◽  
...  

Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain–associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1–deficient mouse embryonic fibroblasts and cells expressing active β1 integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1–dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.


2014 ◽  
Vol 25 (7) ◽  
pp. 1111-1126 ◽  
Author(s):  
Merja Joensuu ◽  
Ilya Belevich ◽  
Olli Rämö ◽  
Ilya Nevzorov ◽  
Helena Vihinen ◽  
...  

The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.


2018 ◽  
Vol 42 (21) ◽  
pp. 17351-17358 ◽  
Author(s):  
Anup Kumar Bhanja ◽  
Snehasis Mishra ◽  
Ketaki Kar ◽  
Kaushik Naskar ◽  
Suvendu Maity ◽  
...  

An allyl-rhodamine Schiff base shows excellent palladium sensitivity (LOD, 95 nM) irrespective of Pd(0,ii,iv) and practical applicability is judged in living cells of RAW 264.7 (macrophage) cells.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuki Takamatsu ◽  
Olga Dolnik ◽  
Takeshi Noda ◽  
Stephan Becker

Abstract Background Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. Methods To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Results Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. Conclusions We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2016 ◽  
Vol 52 (60) ◽  
pp. 9442-9445 ◽  
Author(s):  
Andrew V. Anzalone ◽  
Zhixing Chen ◽  
Virginia W. Cornish

A new cell-permeable caged oxazine fluorophore was synthesized for protein specific labeling and photoactivation in living cells.


2015 ◽  
Vol 3 (17) ◽  
pp. 3617-3624 ◽  
Author(s):  
Peng Wang ◽  
Jiang Wu ◽  
Panpan Zhou ◽  
Weisheng Liu ◽  
Yu Tang

A novel peptide-based fluorescent chemosensor containing both tryptophan and a dansyl fluorophore has been designed to detect Zn2+ in 100% aqueous solution and living cells via two pathways including fluorescence resonance energy transfer and chelation enhanced fluorescence.


mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
H. M. van der Schaar ◽  
C. E. Melia ◽  
J. A. C. van Bruggen ◽  
J. R. P. M. Strating ◽  
M. E. D. van Geenen ◽  
...  

ABSTRACT Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells. Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.


2006 ◽  
Vol 14 (4) ◽  
pp. 42-46 ◽  
Author(s):  
Edward Lachica

Just two decades ago, life scientists studied biological structure, developmental anatomy and intracellular processes by describing individual snapshots of kinetic events. Today, with so much bioscience research focusing on dynamic processes that occur on the molecular, cellular and whole organ level, it is important to record events as they happen, over seconds, minutes or hours, in living cells. Photographs and camera lucida drawings of fixed, stained cells have given way to live cell imaging using fluorescent probes, warming trays to promote cell viability and cinemicrography as a method of recording events.


Sign in / Sign up

Export Citation Format

Share Document