scholarly journals Traffic watch: Live-cell imaging

2003 ◽  
Vol 25 (3) ◽  
pp. 15-17
Author(s):  
David J. Stephens

Microscopy has been at the core of cell biology research ever since the coining of the term ‘cell’ by Robert Hooke in the 17th Century1. For many years, it has been possible to gain insight into ‘steady-state’ cellular function from the analysis of fixed samples, but it is only relatively recently that imaging of living cells has become a widely used tool to support biochemical and electron microscopy studies. Membrane traffic research, which by its very nature is a highly dynamics process, has benefited hugely from the ability to image specific processes in living cells and tissues.

mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
H. M. van der Schaar ◽  
C. E. Melia ◽  
J. A. C. van Bruggen ◽  
J. R. P. M. Strating ◽  
M. E. D. van Geenen ◽  
...  

ABSTRACT Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells. Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.


2007 ◽  
Vol 179 (4) ◽  
pp. 635-641 ◽  
Author(s):  
Boris M. Slepchenko ◽  
Irina Semenova ◽  
Ilya Zaliapin ◽  
Vladimir Rodionov

Intracellular transport of membrane organelles occurs along microtubules (MTs) and actin filaments (AFs). Although transport along each type of the cytoskeletal tracks is well characterized, the switching between the two types of transport is poorly understood because it cannot be observed directly in living cells. To gain insight into the regulation of the switching of membrane organelles between the two major transport systems, we developed a novel approach that combines live cell imaging with computational modeling. Using this approach, we measured the parameters that determine how fast membrane organelles switch back and forth between MTs and AFs (the switching rate constants) and compared these parameters during different signaling states. We show that regulation involves a major change in a single parameter: the transferring rate from AFs onto MTs. This result suggests that MT transport is the defining factor whose regulation determines the choice of the cytoskeletal tracks during the transport of membrane organelles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245795
Author(s):  
Agatha M. Reigoto ◽  
Sarah A. Andrade ◽  
Marianna C. R. R. Seixas ◽  
Manoel L. Costa ◽  
Claudia Mermelstein

Microscopy is the main technique to visualize and study the structure and function of cells. The impact of optical and electron microscopy techniques is enormous in all fields of biomedical research. It is possible that different research areas rely on microscopy in diverse ways. Here, we analyzed comparatively the use of microscopy in pharmacology and cell biology, among other biomedical sciences fields. We collected data from articles published in several major journals in these fields. We analyzed the frequency of use of different optical and electron microscopy techniques: bright field, phase contrast, differential interference contrast, polarization, conventional fluorescence, confocal, live cell imaging, super resolution, transmission and scanning electron microscopy, and cryoelectron microscopy. Our analysis showed that the use of microscopy has a distinctive pattern in each research area, and that nearly half of the articles from pharmacology journals did not use any microscopy method, compared to the use of microscopy in almost all the articles from cell biology journals. The most frequent microscopy methods in all the journals in all areas were bright field and fluorescence (conventional and confocal). Again, the pattern of use was different: while the most used microscopy methods in pharmacology were bright field and conventional fluorescence, in cell biology the most used methods were conventional and confocal fluorescence, and live cell imaging. We observed that the combination of different microscopy techniques was more frequent in cell biology, with up to 6 methods in the same article. To correlate the use of microscopy with the research theme of each article, we analyzed the proportion of microscopy figures with the use of cell culture. We analyzed comparatively the vocabulary of each biomedical sciences field, by the identification of the most frequent words in the articles. The collection of data described here shows a vast difference in the use of microscopy among different fields of biomedical sciences. The data presented here could be valuable in other scientific and educational contexts.


2008 ◽  
Vol 180 (2) ◽  
pp. 427-441 ◽  
Author(s):  
Angélique Millon-Frémillon ◽  
Daniel Bouvard ◽  
Alexei Grichine ◽  
Sandra Manet-Dupé ◽  
Marc R. Block ◽  
...  

Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain–associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1–deficient mouse embryonic fibroblasts and cells expressing active β1 integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1–dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.


2018 ◽  
Vol 42 (21) ◽  
pp. 17351-17358 ◽  
Author(s):  
Anup Kumar Bhanja ◽  
Snehasis Mishra ◽  
Ketaki Kar ◽  
Kaushik Naskar ◽  
Suvendu Maity ◽  
...  

An allyl-rhodamine Schiff base shows excellent palladium sensitivity (LOD, 95 nM) irrespective of Pd(0,ii,iv) and practical applicability is judged in living cells of RAW 264.7 (macrophage) cells.


2016 ◽  
Vol 52 (60) ◽  
pp. 9442-9445 ◽  
Author(s):  
Andrew V. Anzalone ◽  
Zhixing Chen ◽  
Virginia W. Cornish

A new cell-permeable caged oxazine fluorophore was synthesized for protein specific labeling and photoactivation in living cells.


2015 ◽  
Vol 3 (17) ◽  
pp. 3617-3624 ◽  
Author(s):  
Peng Wang ◽  
Jiang Wu ◽  
Panpan Zhou ◽  
Weisheng Liu ◽  
Yu Tang

A novel peptide-based fluorescent chemosensor containing both tryptophan and a dansyl fluorophore has been designed to detect Zn2+ in 100% aqueous solution and living cells via two pathways including fluorescence resonance energy transfer and chelation enhanced fluorescence.


Sign in / Sign up

Export Citation Format

Share Document