scholarly journals SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans

2008 ◽  
Vol 183 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Takaharu G. Yamamoto ◽  
Sonoko Watanabe ◽  
Anthony Essex ◽  
Risa Kitagawa

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation by delaying anaphase onset until all sister kinetochores are attached to bipolar spindles. An RNA interference screen for synthetic genetic interactors with a conserved SAC gene, san-1/MAD3, identified spdl-1, a Caenorhabditis elegans homologue of Spindly. SPDL-1 protein localizes to the kinetochore from prometaphase to metaphase, and this depends on KNL-1, a highly conserved kinetochore protein, and CZW-1/ZW10, a component of the ROD–ZW10–ZWILCH complex. In two-cell–stage embryos harboring abnormal monopolar spindles, SPDL-1 is required to induce the SAC-dependent mitotic delay and localizes the SAC protein MDF-1/MAD1 to the kinetochore facing away from the spindle pole. In addition, SPDL-1 coimmunoprecipitates with MDF-1/MAD1 in vivo. These results suggest that SPDL-1 functions in a kinetochore receptor of MDF-1/MAD1 to induce SAC function.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1040-1040
Author(s):  
Zahi Abdul Sater ◽  
Richa Sharma ◽  
Elizabeth Sierra Potchanant ◽  
Ying He ◽  
Grzegorz Nalepa

Abstract Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with genomic instability, high risk of acute myeloid leukemia (AML) and other malignancies. Somatic mutations within the FA/BRCA signaling network occur in AML in the general population, reflecting the importance of FA genes in tumor suppression. While the role of FA signaling in DNA damage repair and replication is well-established, we and others found that the FA network is essential for error-free chromosome segregation during cell division. Both interphase and mitotic errors contribute to the evolution of genomic instability during FA-/- human and murine hematopoiesis in vivo. However, the molecular mechanisms of FA pathway-dependent genome housekeeping during mitosis are incompletely understood. Through a synthetic lethal kinome-wide shRNA screen in FANCA patient cells, we discovered interphase and mitotic phosphosignaling networks that FANCA-/- cells depend on for survival, including the BUB1-BUBR1 axis of the spindle assembly checkpoint (SAC). BUB1 and BUBR1 are essential SAC kinases that prevent premature anaphase onset and chromosome mis-segregation by inhibiting the APC (anaphase-promoting complex) ubiquitin ligase at the centromeres until all kinetochores achieve correct attachment to the spindle microtubules. Our super-resolution microscopy and biochemistry experiments revealed that FANCA shuttles to kinetochores upon mitotic entry and physically interacts with BUB1 and BUBR1 at the kinetochore-microtubule attachment sites in attachment- and tension-dependent manner. Consistent with impaired SAC, we found that that anaphase onset as well as APC-mediated degradation of cyclin B1, BUBR1 and CDC20 all occur prematurely in FANCA-/- cells. We found that FANCA is essential for BUBR1 lysine 250 (K-250) acetylation at prometaphase kinetochores, and we confirmed that endogenous BUBR1K250 acetylation is disrupted in FANCA-/- primary patient cells using a validated acetyl-specific antibody. BUBR1K250 acetylation event works as a molecular switch in which BUBR1 is converted from a degradation target to a potent inhibitor of the APC ligase. Further, we observed that loss of FANCA disrupts kinetochore recruitment of the BUBR1K250 acetyltransferase PCAF and its upstream regulator, FANCD1/BRCA2. Our findings establish the first mechanistic connection between FANCA, the canonical SAC tumor suppressor cascade and the FA effector FANCD1/BRCA2. These findings further our understanding of the mechanisms of genomic instability and carcinogenesis resulting from loss of FA signaling. Since impaired BUBR1K250 acetylation causes chromosomal instability and cancer in vivo, our results have a direct translational relevance. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


2013 ◽  
Vol 200 (6) ◽  
pp. 757-772 ◽  
Author(s):  
Andrew D. Stephens ◽  
Rachel A. Haggerty ◽  
Paula A. Vasquez ◽  
Leandra Vicci ◽  
Chloe E. Snider ◽  
...  

The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.


2001 ◽  
Vol 153 (6) ◽  
pp. 1209-1226 ◽  
Author(s):  
Karen Oegema ◽  
Arshad Desai ◽  
Sonja Rybina ◽  
Matthew Kirkham ◽  
Anthony A. Hyman

In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical “kinetochore null” phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A–containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.


1997 ◽  
Vol 9 (2) ◽  
pp. 201 ◽  
Author(s):  
Henry Sathananthan ◽  
Lynne Selwood ◽  
Isabel Douglas ◽  
Kamani Nanayakkara

The development of Antechinus stuartiifrom the 2-cell stage to the blastocyst stage in vivo was examined by routine transmission electron microscopy. The 2–8-cell stages had a similar organization of organelles, whereas the 16- to 32-cell stages had pluriblast cells and trophoblast cells forming an epithelium closely apposed to the zona pellucida. Specialized cell–zona plugs were formed at the 8-cell stage, and primitive cell junctions appeared in later conceptuses. The cytoplasmic organelles included mitochondria, lysosomes, aggregates of smooth endoplasmic reticulum, lipid and protein yolk bodies and fibrillar arrays, possibly contractile in function. Nuclei had uniformly-dispersed dense chromatin. Nucleoli of 2–4-cell conceptuses were dense, compact and fibrillar, and those of 8-cell conceptuses and later conceptuses were finely granular and became progressively reticulated. The embryonic genome is probably not switched on before the 8-cell stage. Sperm tails were detected in cells in several early conceptuses. The yolk mass had the same organelles as cells. Centrioles were discovered for the first time in marsupial conceptuses. These were prominently situated at a spindle pole in a 32-cell blastomere and were associated with a nucleus and sperm tail at the 4-cell stage. It is very likely that the paternal centrosome is inherited at fertilization and perpetuated in Antechinus embryos during cleavage.


2020 ◽  
Vol 30 (7) ◽  
pp. 3960-3976
Author(s):  
Xue Li ◽  
Yue Feng ◽  
Meifang Yan ◽  
Xiaomeng Tu ◽  
Bin Xie ◽  
...  

Abstract De novo microdeletion of chromosome 2p15–16.1 presents clinically recognizable phenotypes that include mental retardation, autism, and microcephaly. Chromosomal maintenance 1 (CRM1) is a gene commonly missing in patients with 2p15–16.1 microdeletion and one of two genes found in the smallest deletion case. In this study, we investigate the role and mechanism of Crm1 in the developing mouse brain by inhibiting the protein or knocking down the gene in vivo. Inhibition of Crm1 reduces the proliferation and increases p53-dependent apoptosis of the cortical neural progenitors, thereby impeding the growth of embryonic cerebral cortex. Live imaging of mitosis in ex vivo embryonic brain slices reveals that inhibition of CRM1 arrests the cortical progenitors at metaphase. The arrested cells eventually slip into a pseudo-G1 phase without chromosome segregation. The mitotic slippage cells are marked by persistent expression of the spindle assembly checkpoint (SAC), repressing of which rescues the cells from apoptosis. Our study reveals that activating the SAC and inducing the mitotic slippage may lead to apoptosis of the cortical neural progenitors. The resulting cell death may well contribute to microcephaly associated with microdeletion of chromosome 2p15–16.1 involving CRM1.


2011 ◽  
Vol 22 (9) ◽  
pp. 1473-1485 ◽  
Author(s):  
Zuzana Storchová ◽  
Justin S. Becker ◽  
Nicolas Talarek ◽  
Sandra Kögelsberger ◽  
David Pellman

The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B–independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B–mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Isabel E. Wassing ◽  
Emily Graham ◽  
Xanita Saayman ◽  
Lucia Rampazzo ◽  
Christine Ralf ◽  
...  

AbstractThe RAD51 recombinase plays critical roles in safeguarding genome integrity, which is fundamentally important for all living cells. While interphase functions of RAD51 in maintaining genome stability are well-characterised, its role in mitosis remains contentious. In this study, we show that RAD51 protects under-replicated DNA in mitotic human cells and, in this way, promotes mitotic DNA synthesis (MiDAS) and successful chromosome segregation. In cells experiencing mild replication stress, MiDAS was detected irrespective of mitotically generated DNA damage. MiDAS broadly required de novo RAD51 recruitment to single-stranded DNA, which was supported by the phosphorylation of RAD51 by the key mitotic regulator Polo-like kinase 1. Importantly, acute inhibition of MiDAS delayed anaphase onset and induced centromere fragility, suggesting a mechanism that prevents the satisfaction of the spindle assembly checkpoint while chromosomal replication remains incomplete. This study hence identifies an unexpected function of RAD51 in promoting genomic stability in mitosis.


2008 ◽  
Vol 182 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Ayumu Yamamoto ◽  
Kenji Kitamura ◽  
Daisuke Hihara ◽  
Yukinobu Hirose ◽  
Satoshi Katsuyama ◽  
...  

During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/CCdc20), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a SAC factor, Mad2, delayed anaphase onset via Slp1 (fission yeast Cdc20) when chromosomes attach to the spindle improperly. However, when the SAC delayed anaphase I, the interval between meiosis I and II shortened. Furthermore, anaphase onset was advanced and the SAC effect was reduced at meiosis II. The advancement of anaphase onset depended on a meiosis-specific, Cdc20-related factor, Fzr1/Mfr1, which contributed to anaphase cyclin decline and anaphase onset and was inefficiently inhibited by the SAC. Our findings show that impacts of SAC activation are not confined to a single division at meiosis due to meiosis-specific APC/C regulation, which has probably been evolved for execution of two meiotic divisions.


2014 ◽  
Vol 206 (7) ◽  
pp. 833-842 ◽  
Author(s):  
Antonio Espert ◽  
Pelin Uluocak ◽  
Ricardo Nunes Bastos ◽  
Davinderpreet Mangat ◽  
Philipp Graab ◽  
...  

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


Sign in / Sign up

Export Citation Format

Share Document