scholarly journals The Cdc42-selective GAP Rich regulates postsynaptic development and retrograde BMP transsynaptic signaling

2010 ◽  
Vol 191 (3) ◽  
pp. 661-675 ◽  
Author(s):  
Minyeop Nahm ◽  
A. Ashleigh Long ◽  
Sang Kyoo Paik ◽  
Sungdae Kim ◽  
Yong Chul Bae ◽  
...  

Retrograde bone morphogenetic protein signaling mediated by the Glass bottom boat (Gbb) ligand modulates structural and functional synaptogenesis at the Drosophila melanogaster neuromuscular junction. However, the molecular mechanisms regulating postsynaptic Gbb release are poorly understood. In this study, we show that Drosophila Rich (dRich), a conserved Cdc42-selective guanosine triphosphatase–activating protein (GAP), inhibits the Cdc42–Wsp pathway to stimulate postsynaptic Gbb release. Loss of dRich causes synaptic undergrowth and strongly impairs neurotransmitter release. These presynaptic defects are rescued by targeted postsynaptic expression of wild-type dRich but not a GAP-deficient mutant. dRich inhibits the postsynaptic localization of the Cdc42 effector Wsp (Drosophila orthologue of mammalian Wiskott-Aldrich syndrome protein, WASp), and manifestation of synaptogenesis defects in drich mutants requires Wsp signaling. In addition, dRich regulates postsynaptic organization independently of Cdc42. Importantly, dRich increases Gbb release and elevates presynaptic phosphorylated Mad levels. We propose that dRich coordinates the Gbb-dependent modulation of synaptic growth and function with postsynaptic development.

2018 ◽  
Author(s):  
Yan Huang ◽  
David Umulis

In both vertebrates and invertebrates, spatial patterning along the Dorsal-ventral (DV) embryonic axis depends on a morphogen gradient of Bone Morphogenetic Protein signaling. Scale invariance of DV patterning by BMPs has been found in both vertebrates and invertebrates, however the mechanisms that regulate gradient scaling remain controversial. To obtain quantitative data that can be used to address core questions of scaling, we introduce a method to tune the size of zebrafish embryos by reducing varying amounts of vegetal yolk. We quantified the BMP signaling gradient in wild-type and perturbed embryos and found that the system scales for reductions in cross-sectional perimeter of up to 30%. Furthermore, we found that the degree of scaling for intraspecies scaling within zebrafish is greater than that between Danioninae species.


2009 ◽  
Vol 106 (37) ◽  
pp. 15774-15779 ◽  
Author(s):  
Sophie E. Creuzet

Emergence of the neural crest (NC) is considered an essential asset in the evolution of the chordate phylum, as specific vertebrate traits such as peripheral nervous system, cephalic skeletal tissues, and head development are linked to the NC and its derivatives. It has been proposed that the emergence of the NC was responsible for the formation of a “new head” characterized by the spectacular development of the forebrain and associated sense organs. It was previously shown that removal of the cephalic NC (CNC) prevents the formation of the facial structures but also results in anencephaly. This article reports on the molecular mechanisms whereby the CNC controls cephalic neurulation and brain morphogenesis. This study demonstrates that molecular variations of Gremlin and Noggin level in CNC account for morphological changes in brain size and development. CNC cells act in these processes through a multi-step control and exert cumulative effects counteracting bone morphogenetic protein signaling produced by the neighboring tissues (e.g., adjacent neuroepithelium, ventro-medial mesoderm, superficial ectoderm). These data provide an explanation for the fact that acquisition of the NC during the protochordate-to-vertebrate transition has coincided with a large increase of brain vesicles.


Hepatology ◽  
2017 ◽  
Vol 66 (5) ◽  
pp. 1616-1630 ◽  
Author(s):  
Tae‐Young Choi ◽  
Mehwish Khaliq ◽  
Shinya Tsurusaki ◽  
Nikolay Ninov ◽  
Didier Y.R. Stainier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document