scholarly journals Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2

2010 ◽  
Vol 191 (7) ◽  
pp. 1315-1332 ◽  
Author(s):  
Kang Zeng ◽  
Ricardo Nunes Bastos ◽  
Francis A. Barr ◽  
Ulrike Gruneberg

Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A–TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A–TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.

2021 ◽  
Author(s):  
Fani Souvalidou ◽  
Dalila Boi ◽  
Roberta Montanari ◽  
Federica Polverino ◽  
Grazia Marini ◽  
...  

Neuroblastoma is a severe childhood disease, accounting for ≈10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcriptional factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation, by directly binding to a highly conserved N-Myc region, i.e. Myc Box I. As a result, elevated levels of N-Myc, which are required for the growth of MYCN amplified cells, are observed. During the last years, it has been demonstrated that the ATP competitive inhibitors of AURKA CD532, MLN8054 and Alisertib also cause essential conformational changes in the structure of the activation loop of the kinase that prevent N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complex with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results, identifying PHA-680626 as an amphosteric inhibitor both in vitro and MYCN overexpressing cell lines, expand the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex, and confirm that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


2021 ◽  
Vol 22 (23) ◽  
pp. 13122
Author(s):  
Dalila Boi ◽  
Fani Souvalidou ◽  
Davide Capelli ◽  
Federica Polverino ◽  
Grazia Marini ◽  
...  

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


2007 ◽  
Vol 17 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Magali Venoux ◽  
Jihane Basbous ◽  
Cyril Berthenet ◽  
Claude Prigent ◽  
Anne Fernandez ◽  
...  

2001 ◽  
Vol 114 (24) ◽  
pp. 4371-4384 ◽  
Author(s):  
Janni Petersen ◽  
Jeannie Paris ◽  
Martin Willer ◽  
Michel Philippe ◽  
Iain M. Hagan

Metazoans contain three aurora-related kinases. Aurora A is required for spindle formation while aurora B is required for chromosome condensation and cytokinesis. Less is known about the function of aurora C. S. pombe contains a single aurora-related kinase, Ark1. Although Ark1 protein levels remained constant as cells progressed through the mitotic cell cycle, its distribution altered during mitosis and meiosis. Throughout G2 Ark1 was concentrated in one to three nuclear foci that were not associated with the spindle pole body/centromere complex. Following commitment to mitosis Ark1 associated with chromatin and was particularly concentrated at several sites including kinetochores/centromeres. Kinetochore/centromere association diminished during anaphase A, after which it was distributed along the spindle. The protein became restricted to a small central zone that transiently enlarged as the spindle extended. As in many other systems mitotic fission yeast cells exhibit a much greater degree of phosphorylation of serine 10 of histone H3 than interphase cells. A number of studies have linked this modification with chromosome condensation. Ark1 immuno-precipitates phosphorylated serine 10 of histone H3 in vitro. This activity was highest in mitotic extracts. The absence of the histone H3 phospho-serine 10 epitope from mitotic cells in which the ark1+ gene had been deleted (ark1.Δ1); the inability of these cells to resolve their chromosomes during anaphase and the co-localisation of this phospho-epitope with Ark1 early in mitosis, all suggest that Ark1 phosphorylates serine 10 of histone H3 in vivo. ark1.Δ1 cells also exhibited a reduction in kinetochore activity and a minor defect in spindle formation. Thus the enzyme activity, localisation and phenotype arising from our manipulations of this single fission yeast aurora kinase family member suggest that this single kinase is executing functions that are separately implemented by distinct aurora A and aurora B kinases in higher systems.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2223-2223
Author(s):  
Veerendra Munugalavadla ◽  
Emily Sims ◽  
David A. Ingram ◽  
Alexander Robling ◽  
Reuben Kapur

Abstract Osteoclasts (OCs) play an indispensable role in regulating bone remodeling. In adults, a significant number of skeletal diseases have been linked to abnormal osteoclast function(s), including rheumatoid arthritis, periodontal disease, multiple myeloma, and metastatic cancers. Although, a clear picture of the critical players that regulate osteoclastogenesis and bone resorption has begun to emerge; further studies detailing the intracellular signaling pathways is necessary for the rationale development of new drugs for the treatment of bone disorders involving OCs. While recent studies utilizing pharmacologic inhibitors of PI-3Kinase have suggested a role for this pathway in osteoclastogenesis, these inhibitors interfere with the function of all classes of PI-3Kinase and result in extensive in vivo toxicity. Therefore, to therapeutically manipulate PI-3Kinase signaling cascade in osteoclasts, additional data evaluating the specific role of individual PI-3Kinase isoforms is necessary. Class IA PI-3Kinase are heterodimeric kinases consisting of a regulatory subunit and a catalytic subunit. Five different proteins, namely p85α, p55α, p50α, p85β, and p55γ, have been identified to date as the regulatory subunits. The p85α, p55α, and p50α proteins are derived from the same gene locus by alternative splicing mechanism. In contrast, distinct genes encode the p85β and p55γ subunits. Utilizing mice deficient in the expression of p85α subunit, we have recently shown that p85α subunit of PI-3Kinase plays an important role in regulating growth and actin based functions in bone marrow (BM) derived macrophages. Here, we demonstrate that OCs express multiple regulatory subunits of class IA PI-3Kinase, including p85α, p85β, p50α and p55α. Deficiency of p85α in OCs alone results in a significant increase in bone mass and bone density (% bone volume [BV]/trabecular volume [TV]: WT 6.7±0.01 vs p85α−/− 14±0.01*, *p<0.01). Histologic sections of p85α −/− bones reveal markedly increased cortical and trabecular mass. Despite their increased bone mass, mutant mice contain significantly greater numbers of OCs in vivo compared to wildtype controls (WT 45.6 vs p85α −/− 118*, *p<0.01). Thus, although OCs appear in p85α −/− mice, nonetheless, the bones of these mice become osteosclerotic, suggesting that osteoclasts lacking p85α may be defective. Consistent with this notion, p85α −/− BM derived OCs show reduced growth and differentiation in response to M-CSF and RANKL stimulation in vitro. Impaired differentiation due to p85α deficiency is manifested in the form of a significant reduction in TRAP positive multinucleated OCs (WT: 23.6±4 vs p85α −/−: 11.7±5*, n=3, *p<0.01), which is associated with a significant reduction in the activation of Akt and ERK MAP kinase. The transcription factor microphthalmia (MITF) is required for multinucleation of OCs. Mutations in MITF result in severe osteopetrosis. Recent studies have suggested that M-CSF induced ERK MAP kinase activation regulates MITFs function during multinucleation, therefore, we examined the expression of MITF in p85α −/− OCs. A 80% reduction in the expression of MITF was observed in p85α −/− OCs compared to controls. Remarkably, the defects in p85α deficient OCs were observed in spite of the continuous expression of p85β, p50α and p55α subunits, suggesting that p85α functions with specificity in regulating OC functions in vivo, in part by modulating the expression of MITF. Thus, p85α is a potential new target for antiosteoporosis therapy.


2015 ◽  
Vol 208 (6) ◽  
pp. 661-669 ◽  
Author(s):  
Nicolas Tavernier ◽  
Anna Noatynska ◽  
Costanza Panbianco ◽  
Lisa Martino ◽  
Lucie Van Hove ◽  
...  

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.


1996 ◽  
Vol 16 (11) ◽  
pp. 6593-6602 ◽  
Author(s):  
K Okamoto ◽  
C Kamibayashi ◽  
M Serrano ◽  
C Prives ◽  
M C Mumby ◽  
...  

We and others previously showed that cyclin G is a transcriptional target of the p53 tumor suppressor protein. However, cellular proteins which might form a complex with cyclin G have not yet been identified. To gain insight into the biological role of cyclin G, we used the yeast two-hybrid screen and isolated two mouse cDNAs encoding cyclin G-interacting proteins. Interestingly, both positive cDNAs encoded B' regulatory subunits of protein phosphatase 2A (PP2A). One clone encodes B'alpha, while the other clone codes for a new member of the B' family, B'beta. B'beta is 70% identical to other members of the B' family. B'alpha associated both in vitro and in vivo with cyclin G but not with the other mammalian cyclins. Furthermore, cyclin G formed a complex with B'alpha only after induction of p53 in p53 temperature-sensitive cell lines. These results indicate that cyclin G forms a specific complex with the B' subunit of PP2A and that complex formation is regulated by p53. Potential roles for the cyclin G-B' complex in p53-mediated pathways are discussed.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Imen Ferchichi ◽  
Yannick Arlot ◽  
Jean-Yves Cremet ◽  
Claude Prigent ◽  
Amel Benammar Elgaaied

AbstractThe serine/threonin kinase Aurora A is an oncoprotein, whereas von Hippel-Lindau protein (pVHL) is a tumor suppressor protein. Both proteins have the same localization during mitosis: in the mitotic spindle and the centrosome. These two proteins also have common functions, such as the regulation of the cell cycle, the stability of the mitotic spindle and both intervene in the functioning of centrosomes. In this study we have analyzed the interaction between Aurora A and pVHL with immunoprecipitation and in vitro phosphorylation experiments. We have confirmed that the immunoprecipitation of pVHL from Hek 293 cell extracts were coupled with Aurora A. In addition, the interaction between the two proteins has been tested by analyzing the phosphorylation of pVHL in vitro by Aurora A. The results revealed that pVHL was phosphorylated by Aurora A. In conclusion, the study demonstrated that Aurora A interacts with and phosphorylates pVHL. Given the role of these two proteins in cell division as well as their status in cancer, this interaction requires further investigation.


2018 ◽  
Vol 115 (51) ◽  
pp. E11894-E11903 ◽  
Author(s):  
Eric W. Lake ◽  
Joseph M. Muretta ◽  
Andrew R. Thompson ◽  
Damien M. Rasmussen ◽  
Abir Majumdar ◽  
...  

Protein kinases undergo large-scale structural changes that tightly regulate function and control recognition by small-molecule inhibitors. Methods for quantifying the conformational effects of inhibitors and linking them to an understanding of selectivity patterns have long been elusive. We have developed an ultrafast time-resolved fluorescence methodology that tracks structural movements of the kinase activation loop in solution with angstrom-level precision, and can resolve multiple structural states and quantify conformational shifts between states. Profiling a panel of clinically relevant Aurora kinase inhibitors against the mitotic kinase Aurora A revealed a wide range of conformational preferences, with all inhibitors promoting either the active DFG-in state or the inactive DFG-out state, but to widely differing extents. Remarkably, these conformational preferences explain broad patterns of inhibitor selectivity across different activation states of Aurora A, with DFG-out inhibitors preferentially binding Aurora A activated by phosphorylation on the activation loop, which dynamically samples the DFG-out state, and DFG-in inhibitors binding preferentially to Aurora A constrained in the DFG-in state by its allosteric activator Tpx2. The results suggest that many inhibitors currently in clinical development may be capable of differentiating between Aurora A signaling pathways implicated in normal mitotic control and in melanoma, neuroblastoma, and prostate cancer. The technology is applicable to a wide range of clinically important kinases and could provide a wealth of valuable structure–activity information for the development of inhibitors that exploit differences in conformational dynamics to achieve enhanced selectivity.


Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5202-5213 ◽  
Author(s):  
Güllü Görgün ◽  
Elisabetta Calabrese ◽  
Teru Hideshima ◽  
Jeffrey Ecsedy ◽  
Giulia Perrone ◽  
...  

Abstract Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


Sign in / Sign up

Export Citation Format

Share Document