scholarly journals Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in C. elegans embryos

2015 ◽  
Vol 208 (6) ◽  
pp. 661-669 ◽  
Author(s):  
Nicolas Tavernier ◽  
Anna Noatynska ◽  
Costanza Panbianco ◽  
Lisa Martino ◽  
Lucie Van Hove ◽  
...  

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siming Qu ◽  
Li Jin ◽  
Hanfei Huang ◽  
Jie Lin ◽  
Weiwu Gao ◽  
...  

Abstract Background Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3 modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers. However, whether and how ALKBH5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived from Chinese people. Methods The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay, Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by CHIP-qPCR. The role of ALKBH5 in HBx mRNA N6-methyladenosine (m6A) modification was further evaluated by MeRIP-qPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells. Result ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly expressed ALKBH5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-dependent manner after HBV infection. The increased ALKBH5 protein catalyzes the m6A demethylation of HBx mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations between HBx and ALKBH5 in HBV-HCC tissues, and depletion of ALKBH5 significantly inhibits HBV-driven tumor cells’ growth and migration in vitro and in vivo. Conclusions HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis, and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiwei Cheng ◽  
Haibo Ma ◽  
Ming Yan ◽  
Wenqun Xing

AbstractEsophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.


2010 ◽  
Vol 191 (7) ◽  
pp. 1315-1332 ◽  
Author(s):  
Kang Zeng ◽  
Ricardo Nunes Bastos ◽  
Francis A. Barr ◽  
Ulrike Gruneberg

Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A–TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A–TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.


2021 ◽  
Author(s):  
Jonathan D Rumley ◽  
Elicia A Preston ◽  
Dylan Cook ◽  
Felicia L Peng ◽  
Amanda L Zacharias ◽  
...  

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ji Yeon Byun ◽  
Young-So Youn ◽  
Ye-Ji Lee ◽  
Youn-Hee Choi ◽  
So-Yeon Woo ◽  
...  

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cellsin vitroandin vivoorchestrate the interaction between COX-2/PGE2and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2production. Both NS-398 and COX-2-siRNA, as well as the PGE2receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2induction. Thein vivorelevance of the interaction between the COX-2/PGE2and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages followingin vivoexposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.


2020 ◽  
Author(s):  
Yeting Hong ◽  
Wei He ◽  
Jianbin Zhang ◽  
Lu Shen ◽  
Chong Yu ◽  
...  

Abstract Background: Cyclin D3-CDK6 complex is a component of the core cell cycle machinery that regulates cell proliferation. By using Human Protein Atlas database, a higher expression level of this complex was found in gastric cancer. However, the function of this complex in gastric cancer remain poorly understood. This study aims to determine the expression pattern of this complex in gastric cancer and to investigate its biological role during tumorigenesis.Methods: To demonstrate that Cyclin D3-CDK6 regulate the c-Myc/miR-15a/16 axis in a feedback loop in gastric cancer, a series of methods were conducted both in vitro and in vivo experiments, including qRT-PCR, western blot analysis, EdU assay, flow cytometry, luciferase reporter assay and immunohistochemical staining. SPSS and Graphpad prism software were used for data analysis.Results: In this study, we found that Cyclin D3 and CDK6 were significantly upregulated in gastric cancer and correlated with poorer overall survival. Further study proved that this complex significantly promoted cell proliferation and cell cycle progression in vitro and accelerated xenografted tumor growth in vivo. Furthermore, we explored the molecular mechanisms through which the complex mediated Rb phosphorylation and then promoted c-Myc expression in vitro, we also found c-Myc could suppress miR-15a/16 expression in gastric cancer cell. Finally, we found that miR-15a/16 can simultaneously regulate Cyclin D3 and CDK6 expression as direct target genes.Conclusions: Our findings uncover the Cyclin D3-CDK6/c-Myc/miR-15a/16 feedback loop axis as a pivotal role in the regulation of gastric cancer tumorigenesis, and this regulating axis may provide a potential therapeutic target for gastric cancer treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


Sign in / Sign up

Export Citation Format

Share Document