scholarly journals Par1b links lumen polarity with LGN–NuMA positioning for distinct epithelial cell division phenotypes

2013 ◽  
Vol 203 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
David Cohen ◽  
Dawn Fernandez ◽  
Louis Hodgson ◽  
Sven C.D. van IJzendoorn ◽  
...  

Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal domains and their cleavage furrow rarely bifurcates the luminal domains. We determine that the serine/threonine kinase Par1b defines lumen position in concert with the position of the astral microtubule anchoring complex LGN–NuMA to yield the distinct epithelial division phenotypes. Par1b signaling via the extracellular matrix (ECM) in polarizing cells determined RhoA/Rho-kinase activity at cell–cell contact sites. Columnar MDCK and Par1b-depleted hepatocytic HepG2 cells featured high RhoA activity that correlated with robust LGN–NuMA recruitment to the metaphase cortex, spindle alignment with the substratum, and columnar organization. Reduced RhoA activity at the metaphase cortex in HepG2 cells and Par1b-overexpressing MDCK cells correlated with a single or no LGN–NuMA crescent, tilted spindles, and the development of lateral lumen polarity.

2021 ◽  
Author(s):  
Kazuya Matsuo ◽  
Sampreeth Thayyil ◽  
Mitsuyasu Kawaguchi ◽  
Hidehiko Nakagawa ◽  
Nobuyuki Tamaoki

Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine kinase, whose inhibitors are useful for the regulation of actomyosin system. Here, we developed a photoswitchable ROCK inhibitor based on a phenylazothiazole...


2011 ◽  
Vol 192 (3) ◽  
pp. 525-540 ◽  
Author(s):  
David Cohen ◽  
Dawn Fernandez ◽  
Francisco Lázaro-Diéguez ◽  
Anne Müsch

The serine/threonine kinase Par1b promotes cell–cell adhesion and determines the polarity of the luminal domain in epithelial cells. In this study, we demonstrate that Par1b also regulates cell–extracellular matrix (ECM) signaling in kidney-derived Madin–Darby canine kidney (MDCK) cells and identified the rho–guanosine triphosphatase adaptor and scaffolding protein IRSp53 as a Par1b substrate involved in this pathway. Par1b overexpression inhibits basal lamina formation, cell spreading, focal adhesion, stress fiber formation, and compaction, whereas Par1b depletion has the opposite effect. IRSp53 depletion mimics Par1b overexpression on cell–ECM signaling and lumen polarity but had no effect on adherens junction formation. Par1b directly phosphorylates IRSp53 on S366 in cell lysates and stimulates phosphorylation on S453/3/5 via an indirect mechanism. A Par1b phosphorylation–deficient IRSp53 mutant but not the wild-type protein efficiently rescues both the cell spreading and the lumen polarity defects in Par1b MDCK cells. Our data suggest a model in which Par1b phosphorylation prevents recruitment of IRSp53 effector proteins to its Src homology domain 3 by promoting 14-3-3 binding in the vicinity of that domain.


1997 ◽  
Vol 272 (27) ◽  
pp. 17154-17159 ◽  
Author(s):  
Mei-Yi Wu ◽  
Tsui-Ling Hsu ◽  
Wan-Wan Lin ◽  
R. Duncan Campbell ◽  
Shie-Liang Hsieh

2014 ◽  
Vol 42 (6) ◽  
pp. 1534-1537 ◽  
Author(s):  
Nicola Brownlow ◽  
Tanya Pike ◽  
Victoria Crossland ◽  
Jeroen Claus ◽  
Peter Parker

Cytokinesis is the final act of the cell cycle where the replicated DNA and cellular contents are finally split into two daughter cells. This process is very tightly controlled as DNA segregation errors and cytokinesis failure is commonly associated with aneuploidy and aggressive tumours. Protein kinase Cε (PKCε) is a lipid-activated serine/threonine kinase that is part of the PKC superfamily. PKCε plays a complex role in the regulation of migration, adhesion and cytokinesis and in the present article we discuss the interplay between these processes. Integrin-mediated interaction with the actin cytoskeleton is a known regulator of cell adhesion and migration and there is emerging evidence that this pathway may also be essential for cytokinesis. We discuss evidence that a known actin-binding region in PKCε is involved in PKCε-mediated regulation of cytokinesis, providing a link between integrin-mediated stabilization of the cytokinesis furrow and PKCε recruitment.


2008 ◽  
Vol 415 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Meghna Thakur ◽  
Pradip K. Chakraborti

Eukaryotic-type serine/threonine protein kinases in bacteria have been implicated in controlling a host of cellular activities. PknA is one of eleven such protein kinases from Mycobacterium tuberculosis which regulates morphological changes associated with cell division. In the present study we provide the evidence for the ability of PknA to transphosphorylate mMurD (mycobacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate-ligase), the enzyme involved in peptidoglycan biosynthesis. Its co-expression in Escherichia coli along with PknA resulted in phosphorylation of mMurD. Consistent with these observations, results of the solid-phase binding assays revealed a high-affinity in vitro binding between the two proteins. Furthermore, overexpression of m-murD in Mycobacterium smegmatis yielded a phosphorylated protein. The results of the present study therefore point towards the possibility of mMurD being a substrate of PknA.


Sign in / Sign up

Export Citation Format

Share Document