scholarly journals Cell division and the maintenance of epithelial order

2014 ◽  
Vol 207 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Katerina Ragkousi ◽  
Matthew C. Gibson

Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eun-Ah Park ◽  
Juri Kim ◽  
Mee Young Shin ◽  
Soon-Jung Park

Abstract Background Polo-like kinases (PLKs) are conserved serine/threonine kinases that regulate the cell cycle. To date, the role of Giardia lamblia PLK (GlPLK) in cells has not been studied. Here, we report our investigation on the function of GlPLK to provide insight into the role of this PKL in Giardia cell division, especially during cytokinesis and flagella formation. Methods To assess the function of GIPLK, Giardia trophozoites were treated with the PLK-specific inhibitor GW843286X (GW). Using a putative open reading frame for the PLK identified in the Giardia genomic database, we generated a transgenic Giardia expressing hemagglutinin (HA)-tagged GlPLK and used this transgenic for immunofluorescence assays (IFAs). GlPLK expression was knocked down using an anti-glplk morpholino to observe its effect on the number of nuclei number and length of flagella. Giardia cells ectopically expressing truncated GlPLKs, kinase domain + linker (GlPLK-KDL) or polo-box domains (GlPLK-PBD) were constructed for IFAs. Mutant GlPLKs at Lys51, Thr179 and Thr183 were generated by site-directed mutagenesis and then used for the kinase assay. To elucidate the role of phosphorylated GlPLK, the phosphorylation residues were mutated and expressed in Giardia trophozoites Results After incubating trophozoites with 5 μM GW, the percentage of cells with > 4 nuclei and longer caudal and anterior flagella increased. IFAs indicated that GlPLK was localized to basal bodies and flagella and was present at mitotic spindles in dividing cells. Morpholino-mediated GlPLK knockdown resulted in the same phenotypes as those observed in GW-treated cells. In contrast to Giardia expressing GlPLK-PBD, Giardia expressing GlPLK-KDL was defective in terms of GIPLK localization to mitotic spindles and had altered localization of the basal bodies in dividing cells. Kinase assays using mutant recombinant GlPLKs indicated that mutation at Lys51 or at both Thr179 and Thr183 resulted in loss of kinase activity. Giardia expressing these mutant GlPLKs also demonstrated defects in cell growth, cytokinesis and flagella formation. Conclusions These data indicate that GlPLK plays a role in Giardia cell division, especially during cytokinesis, and that it is also involved in flagella formation.


2020 ◽  
Author(s):  
Mia Panlilio ◽  
Jacopo Grilli ◽  
Giorgio Tallarico ◽  
Ilaria Iuliani ◽  
Bianca Sclavi ◽  
...  

AbstractDespite of a boost of recent progress in dynamic single-cell measurements and analyses in E. coli, we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division, and on the molecular origin of the observed “adder correlations”, whereby cells divide adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device. We find that the division rate changes quickly after nutrients change, much before growth rate goes to a steady state, and in a way that adder correlations are robustly conserved. Comparison of these data to simple mathematical models falsifies proposed mechanisms where replication-segregation or septum completion are the limiting step for cell division. Instead, we show that the accumulation of a putative constitutively expressed “P-sector divisor” protein explains the behavior during the shift.Significance statementThe mechanism leading to cell division in the bacterium E. coli is unknown, but we know that it results in adding a roughly constant size every cell cycle, regardless of size at birth. While most available studies try to infer information on cell division from steadily dividing cells in constant nutrient conditions, this study leverages on a high-resolution device to monitor single-cell growth division upon nutrient changes. Comparing these data with different mathematical models, the authors are able to discriminate among fundamentally different mechanisms of cell division control, and they show that the data support a model where an unregulated protein accumulates to a threshold and triggers division.


2009 ◽  
Vol 20 (16) ◽  
pp. 3740-3750 ◽  
Author(s):  
Nicole den Elzen ◽  
Carmen V. Buttery ◽  
Madhavi P. Maddugoda ◽  
Gang Ren ◽  
Alpha S. Yap

Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.


Author(s):  
V. I. Ipatova ◽  
A. G. Dmitrieva ◽  
О. F. Filenko ◽  
T. V. Drozdenko

The structure of the laboratory population of green microalgae Scenedesmus quadricauda (Turp.) Breb (=Desmodesmus communis E. Hegew.) was studied at different stages of its growth (lag-phase, log-phase and stationary phase) at low concentrations of copper chloride and silver nitrate by the method microculture, allowing to monitor the state and development of single cells having different physiological status. The response of the culture of S. quadricauda - the change in the number of cells and the fractional composition (the fraction of dividing, «dormant» and dying cells) depended not only on the concentration of the toxicant in the medium, but also on the physiological state of the culture: the level of synchronization and the growth phase. Silver ions at low concentrations had a more pronounced toxic effect on the culture than copper ions at different phases of its development, especially at a concentration of 0.001 mg/l (10-9 M). The main mechanism of the toxic effect of metals is to inhibit the process of cell division. At low concentrations of toxicants, especially at a concentration of 0.001 mg/l, a «paradoxical» effect expressed in the predominance of the fraction of «dormant» cells was revealed. The temporary inhibition of the process of cell division can be regarded as a protective mechanism that allows preserving the integrity of the population and its ability to survive in a changing environment. The obtained data explain the effect of action of low concentrations of substances due to their inclusion in the cell, the subsequent accumulation in the cell and their low excretion.


Author(s):  
Martin Philpott ◽  
Jonathan Watson ◽  
Anjan Thakurta ◽  
Tom Brown ◽  
Tom Brown ◽  
...  

AbstractHere we describe single-cell corrected long-read sequencing (scCOLOR-seq), which enables error correction of barcode and unique molecular identifier oligonucleotide sequences and permits standalone cDNA nanopore sequencing of single cells. Barcodes and unique molecular identifiers are synthesized using dimeric nucleotide building blocks that allow error detection. We illustrate the use of the method for evaluating barcode assignment accuracy, differential isoform usage in myeloma cell lines, and fusion transcript detection in a sarcoma cell line.


1998 ◽  
Vol 9 (8) ◽  
pp. 2037-2049 ◽  
Author(s):  
William B. Raich ◽  
Adrienne N. Moran ◽  
Joel H. Rothman ◽  
Jeff Hardin

Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele ofzen-4, an MKLP1 homologue in the nematodeCaenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1267-1276
Author(s):  
Katayoun Afshar ◽  
Pierre Gönczy ◽  
Stephen DiNardo ◽  
Steven A Wasserman

Abstract A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells.


1983 ◽  
Vol 60 (1) ◽  
pp. 137-156
Author(s):  
L.A. Hufnagel

A freeze-fracture analysis of early neogenesis of somatic and oral cilia of Tetrahymena was conducted using exponentially grown cultures and also cells induced to undergo oral reorganization. In this report, presumptive ciliary domains (PCDs), sites of future outgrowth of somatic cilia, are identified and their membrane structure is described in detail. The fairy ring, an array of membrane particles that occurs within the PCD and appears to be a precursor of the ciliary necklace, is described. A sequence of early stages in the formation of the ciliary necklace of somatic cilia is deduced from topographical information and membrane particle arrangements and numbers. Evidence is presented that basal bodies are seated at the cell surface prior to initiation of necklace assembly and a possible role for the basal body in necklace assembly is suggested. In dividing cells, new oral cilia grow out prior to orientation of cilia-parasomal sac complexes relative to cell axes. In dividing cells and during oral reorganization, new cilia also develop prior to their alignment into membranelles. Thus, growth of cilia is independent of their spatial orientation. Fairy rings were not observed during oral reorganization. During cell division, proliferation of new cilia is accompanied by the formation of a network of junctions between a cortical system of membranous cisternae, the cortical ‘alveoli’. These interalveolar junctions may serve as tracks for early positioning and orientation of new oral basal bodies.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4623-4633 ◽  
Author(s):  
K. Gallagher ◽  
L.G. Smith

In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 599-606
Author(s):  
S.T. Bissen ◽  
C.M. Smith

Leech embryos undergo invariant sequences of equal and unequal cell divisions to give rise to identifiable progeny cells. While many of the early cleavages are under maternal control, the divisions of a subset of early blastomeres (the large cells of the D' lineage) are perturbed after the inhibition of zygotic transcription. Analysis of the different types of cells produced in embryos injected with the transcriptional inhibitor, alpha-amanitin, revealed that the symmetry of cell division is perturbed in these large D'-derived cells during this early period of development. These cells, which would normally undergo a series of equal and unequal cleavages, always undergo equal cleavages after the inhibition of zygotic transcription. It appears that zygotically transcribed gene product(s) are required in the large cells of the D' lineage to orient the mitotic spindles properly for these unequal cell cleavages.


Sign in / Sign up

Export Citation Format

Share Document