scholarly journals GGCX and VKORC1 inhibit osteocalcin endocrine functions

2015 ◽  
Vol 208 (6) ◽  
pp. 761-776 ◽  
Author(s):  
Mathieu Ferron ◽  
Julie Lacombe ◽  
Amélie Germain ◽  
Franck Oury ◽  
Gérard Karsenty

Osteocalcin (OCN) is an osteoblast-derived hormone favoring glucose homeostasis, energy expenditure, male fertility, brain development, and cognition. Before being secreted by osteoblasts in the bone extracellular matrix, OCN is γ-carboxylated by the γ-carboxylase (GGCX) on three glutamic acid residues, a cellular process requiring reduction of vitamin K (VK) by a second enzyme, a reductase called VKORC1. Although circumstantial evidence suggests that γ-carboxylation may inhibit OCN endocrine functions, genetic evidence that it is the case is still lacking. Here we show using cell-specific gene inactivation models that γ-carboxylation of OCN by GGCX inhibits its endocrine function. We further show that VKORC1 is required for OCN γ-carboxylation in osteoblasts, whereas its paralogue, VKORC1L1, is dispensable for this function and cannot compensate for the absence of VKORC1 in osteoblasts. This study genetically and biochemically delineates the functions of the enzymes required for OCN modification and demonstrates that it is the uncarboxylated form of OCN that acts as a hormone.

2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


2012 ◽  
Vol 30 (8) ◽  
pp. 628-628
Author(s):  
Cécile Charrier ◽  
Kaumudi Joshi ◽  
Takayuki Sassa ◽  
Jaeda Coutinho‐Budd ◽  
Nelle Lambert ◽  
...  

2019 ◽  
Vol 19 ◽  
pp. 97-106 ◽  
Author(s):  
G. Wolff ◽  
A.E. Taranko ◽  
I. Meln ◽  
J. Weinmann ◽  
T. Sijmonsma ◽  
...  

2018 ◽  
Vol 9 (31) ◽  
pp. 6516-6522 ◽  
Author(s):  
Yupeng Sun ◽  
Kaixiang Zhang ◽  
Ruijie Deng ◽  
Xiaojun Ren ◽  
Can Wu ◽  
...  

Graphene oxide/polyacrylamide composite scaffolds with tunable stiffness are designed and fabricated to investigate the effect of extracellular matrix (ECM) stiffness on cytoskeleton assembly and specific gene expression during cell growth.


2019 ◽  
Vol 116 (27) ◽  
pp. 13266-13275 ◽  
Author(s):  
Christopher W. Kuzawa ◽  
Clancy Blair

The causes of obesity are complex and multifactorial. We propose that one unconsidered but likely important factor is the energetic demand of brain development, which could constrain energy available for body growth and other functions, including fat deposition. Humans are leanest during early childhood and regain body fat in later childhood. Children reaching this adiposity rebound (AR) early are at risk for adult obesity. In aggregate data, the developing brain consumes a lifetime peak of 66% of resting energy expenditure in the years preceding the AR, and brain energy use is inversely related to body weight gain from infancy until puberty. Building on this finding, we hypothesize that individual variation in childhood brain energy expenditure will help explain variation in the timing of the AR and subsequent obesity risk. The idea that brain energetics constrain fat deposition is consistent with evidence that genes that elevate BMI are expressed in the brain and mediate a trade-off between the size of brain structures and BMI. Variability in energy expended on brain development and function could also help explain widely documented inverse relationships between the BMI and cognitive abilities. We estimate that variability in brain energetics could explain the weight differential separating children at the 50th and 70th BMI-for-age centiles immediately before the AR. Our model proposes a role for brain energetics as a driver of variation within a population’s BMI distribution and suggests that educational interventions that boost global brain energy use during childhood could help reduce the burden of obesity.


2020 ◽  
Vol 30 (1) ◽  
pp. 42-56
Author(s):  
D. E. Paula Junior ◽  
M. T. Oliveira ◽  
J. J. Bruscadin ◽  
D. G. Pinheiro ◽  
A. D. Bomtorin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document