scholarly journals DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites

2017 ◽  
Vol 217 (2) ◽  
pp. 527-540 ◽  
Author(s):  
Shalaka Chitale ◽  
Holger Richly

Ultraviolet (UV) irradiation triggers the recruitment of DNA repair factors to the lesion sites and the deposition of histone marks as part of the DNA damage response. The major DNA repair pathway removing DNA lesions caused by exposure to UV light is nucleotide excision repair (NER). We have previously demonstrated that the endoribonuclease DICER facilitates chromatin decondensation during lesion recognition in the global-genomic branch of NER. Here, we report that DICER mediates the recruitment of the methyltransferase MMSET to the DNA damage site. We show that MMSET is required for efficient NER and that it catalyzes the dimethylation of histone H4 at lysine 20 (H4K20me2). H4K20me2 at DNA damage sites facilitates the recruitment of the NER factor XPA. Our work thus provides evidence for an H4K20me2-dependent mechanism of XPA recruitment during lesion recognition in the global-genomic branch of NER.

2019 ◽  
Author(s):  
JT Barnett ◽  
J Kuper ◽  
W Koelmel ◽  
C Kisker ◽  
NM Kad

AbstractNucleotide excision repair (NER) protects the genome following exposure to diverse types of DNA damage, including UV light and chemotherapeutics. Mutations in mammalian NER genes lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, and Cockayne syndrome. In eukaryotes, the major transcription factor TFIIH is the central hub of NER. The core components of TFIIH include the helicases XPB, XPD, and five ‘structural’ subunits. Two of these structural TFIIH proteins, p44 and p62 remain relatively unstudied; p44 is known to regulate the helicase activity of XPD during NER whereas p62’s role is thought to be structural. However, a recent cryo-EM structure shows that p44, p62, and XPD make extensive contacts within TFIIH, with part of p62 occupying XPD’s DNA binding site. This observation implies a more extensive role in DNA repair beyond the structural integrity of TFIIH. Here, we show that p44 stimulates XPD’s ATPase but upon encountering DNA damage, further stimulation is only observed when p62 is part of the ternary complex; suggesting a role for the p44/p62 heterodimer in TFIIH’s mechanism of damage detection. Using single molecule imaging, we demonstrate that p44/p62 independently interacts with DNA; it is seen to diffuse, however, in the presence of UV-induced DNA lesions the complex stalls. Combined with the analysis of a recent cryo-EM structure we suggest that p44/p62 acts as a novel DNA-binding entity within TFIIH that is capable of recognizing DNA damage. This revises our understanding of TFIIH and prompts more extensive investigation into the core subunits for an active role during both DNA repair and transcription.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Seung-Joo Lee ◽  
Rou-Jia Sung ◽  
Gregory L. Verdine

Nucleotide excision repair (NER) is an essential DNA repair system distinguished from other such systems by its extraordinary versatility. NER removes a wide variety of structurally dissimilar lesions having only their bulkiness in common. NER can also repair several less bulky nucleobase lesions, such as 8-oxoguanine. Thus, how a single DNA repair system distinguishes such a diverse array of structurally divergent lesions from undamaged DNA has been one of the great unsolved mysteries in the field of genome maintenance. Here we employ a synthetic crystallography approach to obtain crystal structures of the pivotal NER enzyme UvrB in complex with duplex DNA, trapped at the stage of lesion-recognition. These structures coupled with biochemical studies suggest that UvrB integrates the ATPase-dependent helicase/translocase and lesion-recognition activities. Our work also conclusively establishes the identity of the lesion-containing strand and provides a compelling insight to how UvrB recognizes a diverse array of DNA lesions.


2012 ◽  
Vol 196 (6) ◽  
pp. 681-688 ◽  
Author(s):  
Steven Bergink ◽  
Wendy Toussaint ◽  
Martijn S. Luijsterburg ◽  
Christoffel Dinant ◽  
Sergey Alekseev ◽  
...  

The recognition of helix-distorting deoxyribonucleic acid (DNA) lesions by the global genome nucleotide excision repair subpathway is performed by the XPC–RAD23–CEN2 complex. Although it has been established that Rad23 homologs are essential to protect XPC from proteasomal degradation, it is unclear whether RAD23 proteins have a direct role in the recognition of DNA damage. In this paper, we show that the association of XPC with ultraviolet-induced lesions was impaired in the absence of RAD23 proteins. Furthermore, we show that RAD23 proteins rapidly dissociated from XPC upon binding to damaged DNA. Our data suggest that RAD23 proteins facilitate lesion recognition by XPC but do not participate in the downstream DNA repair process.


2019 ◽  
Author(s):  
Goran Kokic ◽  
Aleksandar Chernev ◽  
Dimitry Tegunov ◽  
Christian Dienemann ◽  
Henning Urlaub ◽  
...  

AbstractGenomes are constantly threatened by DNA damage, but cells can remove a large variety of DNA lesions by nucleotide excision repair (NER)1. Mutations in NER factors compromise cellular fitness and cause human diseases such as Xeroderma pigmentosum (XP), Cockayne syndrome and trichothiodystrophy2,3. The NER machinery is built around the multisubunit transcription factor IIH (TFIIH), which opens the DNA repair bubble, scans for the lesion, and coordinates excision of the damaged DNA single strand fragment1,4. TFIIH consists of a kinase module and a core module that contains the ATPases XPB and XPD5. Here we prepare recombinant human TFIIH and show that XPB and XPD are stimulated by the additional NER factors XPA and XPG, respectively. We then determine the cryo-electron microscopy structure of the human core TFIIH-XPA-DNA complex at 3.6 Å resolution. The structure represents the lesion-scanning intermediate on the NER pathway and rationalizes the distinct phenotypes of disease mutations. It reveals that XPB and XPD bind double- and single-stranded DNA, respectively, consistent with their translocase and helicase activities. XPA forms a bridge between XPB and XPD, and retains the DNA at the 5’-edge of the repair bubble. Biochemical data and comparisons with prior structures6,7 explain how XPA and XPG can switch TFIIH from a transcription factor to a DNA repair factor. During transcription, the kinase module inhibits the repair helicase XPD8. For DNA repair, XPA dramatically rearranges the core TFIIH structure, which reorients the ATPases, releases the kinase module and displaces a ‘plug’ element from the DNA-binding pore in XPD. This enables XPD to move by ~80 Å, engage with DNA, and scan for the lesion in a XPG-stimulated manner. Our results provide the basis for a detailed mechanistic analysis of the NER mechanism.


2019 ◽  
Vol 47 (14) ◽  
pp. 7392-7401 ◽  
Author(s):  
Kathiresan Selvam ◽  
Sheikh Arafatur Rahman ◽  
Shisheng Li

Abstract Nucleotide excision repair (NER) consists of global genomic NER (GG-NER) and transcription coupled NER (TC-NER) subpathways. In eukaryotic cells, genomic DNA is wrapped around histone octamers (an H3–H4 tetramer and two H2A–H2B dimers) to form nucleosomes, which are well known to profoundly inhibit the access of NER proteins. Through unbiased screening of histone H4 residues in the nucleosomal LRS (loss of ribosomal DNA-silencing) domain, we identified 24 mutations that enhance or decrease UV sensitivity of Saccharomyces cerevisiae cells. The histone H4 H75E mutation, which is largely embedded in the nucleosome and interacts with histone H2B, significantly attenuates GG-NER and Rad26-independent TC-NER but does not affect TC-NER in the presence of Rad26. All the other histone H4 mutations, except for T73F and T73Y that mildly attenuate GG-NER, do not substantially affect GG-NER or TC-NER. The attenuation of GG-NER and Rad26-independent TC-NER by the H4H75E mutation is not due to decreased chromatin accessibility, impaired methylation of histone H3 K79 that is at the center of the LRS domain, or lowered expression of NER proteins. Instead, the attenuation is at least in part due to impaired recruitment of Rad4, the key lesion recognition and verification protein, to chromatin following induction of DNA lesions.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


2009 ◽  
Vol 103 (5) ◽  
pp. 686-695 ◽  
Author(s):  
Ruth J. Bevan ◽  
Nalini Mistry ◽  
Parul R. Patel ◽  
Eugene P. Halligan ◽  
Rosamund Dove ◽  
...  

Intracellular vitamin C acts to protect cells against oxidative stress by intercepting reactive oxygen species (ROS) and minimising DNA damage. However, rapid increases in intracellular vitamin C may induce ROS with subsequent DNA damage priming DNA repair processes. Herein, we examine the potential of vitamin C and the derivative ascorbate-2-phosphate (2-AP) to induce a nucleotide excision repair (NER) response to DNA damage in a model of peripheral blood mononuclear cells. Exposure of cells to elevated levels of vitamin C induced ROS activity, resulting in increased levels of deoxycytidine glyoxal (gdC) and 8-oxo-2′-deoxyguanosine (8-oxodG) adducts in DNA; a stress response was also induced by 2-AP, but was delayed in comparison to vitamin C. Evidence of gdC repair was also apparent. Measurement of cyclobutane thymine–thymine dimers (T < >T) in DNA and culture supernatant were included as a positive marker for NER activity; this was evidenced by a reduction in DNA and increases in culture supernatant levels of T < >T for vitamin C-treated cells. Genomics analysis fully supported these findings confirming that 2-AP, in particular, induced genes associated with stress response, cell cycle arrest, DNA repair and apoptosis, and additionally provided evidence for the involvement of vitamin C in the mobilisation of intracellular catalytic Fe.


2015 ◽  
Vol 291 (2) ◽  
pp. 848-861 ◽  
Author(s):  
Aditi Nadkarni ◽  
John A. Burns ◽  
Alberto Gandolfi ◽  
Moinuddin A. Chowdhury ◽  
Laura Cartularo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wataru Sakai ◽  
Mayumi Yuasa-Sunagawa ◽  
Masayuki Kusakabe ◽  
Aiko Kishimoto ◽  
Takeshi Matsui ◽  
...  

AbstractThe ubiquitin–proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6–4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.


Sign in / Sign up

Export Citation Format

Share Document