scholarly journals ORP5 regulates PI(4)P on the lipid droplet: Novel players on the monolayer

2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Mike F. Renne ◽  
Brooke M. Emerling

How the distinct lipid composition of organelles is determined and maintained is still poorly understood. In this issue, Du et al. (2019. J. Cell Biol.https://doi.org/10.1083/jcb.201905162) show that the lipid transfer protein ORP5 functions at ER–LD contact sites, regulating lipid droplet levels of phosphatidylserine and phosphatidylinositol-4-phosphate.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maxime Boutry ◽  
Peter K. Kim

AbstractMitochondrial division is not an autonomous event but involves multiple organelles, including the endoplasmic reticulum (ER) and lysosomes. Whereas the ER drives the constriction of mitochondrial membranes, the role of lysosomes in mitochondrial division is not known. Here, using super-resolution live-cell imaging, we investigate the recruitment of lysosomes to the site of mitochondrial division. We find that the ER recruits lysosomes to the site of division through the interaction of VAMP-associated proteins (VAPs) with the lysosomal lipid transfer protein ORP1L to induce a three-way contact between the ER, lysosome, and the mitochondrion. We also show that ORP1L might transport phosphatidylinositol-4-phosphate (PI(4)P) from lysosomes to mitochondria, as inhibiting its transfer or depleting PI(4)P at the mitochondrial division site impairs fission, demonstrating a direct role for PI(4)P in the division process. Our findings support a model where the ER recruits lysosomes to act in concert at the fission site for the efficient division of mitochondria.


2020 ◽  
Author(s):  
Bishal Basak ◽  
Harini Krishnan ◽  
Padinjat Raghu

Abstract During phospholipase C-β (PLC-β) signalling in Drosophila photoreceptors, the phosphatidylinositol transfer protein (PITP) RDGB, is required for lipid transfer at endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (MCS). Depletion of RDGB or its mis-localization away from the ER-PM MCS results in multiple defects in photoreceptor function. Previously, the interaction between the FFAT motif of RDGB and the integral ER protein dVAP-A was shown to be essential for accurate localization to ER-PM MCS. Here, we report that the FFAT/dVAP-A interaction alone is insufficient to localize RDGB accurately; this also requires the function of the C-terminal domains, DDHD and LNS2. Mutations in each of these domains results in mis-localization of RDGB leading to loss of function. While the LNS2 domain is necessary, it is not sufficient for the correct localization of RDGB, which also requires the C-terminal DDHD domain. The function of the DDHD domain is mediated through an intramolecular interaction with the LNS2 domain. Thus, interactions between the additional domains in a multi-domain PITP together lead to accurate localization at the MCS and signalling function.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryan S D'Souza ◽  
Jun Y Lim ◽  
Alper Turgut ◽  
Kelly Servage ◽  
Junmei Zhang ◽  
...  

Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.


Biology Open ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Bishal Basak ◽  
Harini Krishnan ◽  
Padinjat Raghu

ABSTRACT During phospholipase C-β (PLC-β) signalling in Drosophila photoreceptors, the phosphatidylinositol transfer protein (PITP) RDGB, is required for lipid transfer at endoplasmic reticulum (ER)–plasma membrane (PM) contact sites (MCS). Depletion of RDGB or its mis-localization away from the ER–PM MCS results in multiple defects in photoreceptor function. Previously, the interaction between the FFAT motif of RDGB and the integral ER protein dVAP-A was shown to be essential for accurate localization to ER–PM MCS. Here, we report that the FFAT/dVAP-A interaction alone is insufficient to localize RDGB accurately; this also requires the function of the C-terminal domains, DDHD and LNS2. Mutations in each of these domains results in mis-localization of RDGB leading to loss of function. While the LNS2 domain is necessary, it is not sufficient for the correct localization of RDGB, which also requires the C-terminal DDHD domain. The function of the DDHD domain is mediated through an intramolecular interaction with the LNS2 domain. Thus, interactions between the additional domains in a multi-domain PITP together lead to accurate localization at the MCS and signalling function. This article has an associated First Person interview with the first author of the paper.


2019 ◽  
Author(s):  
RS D’Souza ◽  
JY Lim ◽  
A Turgut ◽  
K Servage ◽  
J Zhang ◽  
...  

AbstractCoordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.


Biology Open ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. bio058657

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Bishal Basak is first author on ‘Interdomain interactions regulate the localization of a lipid transfer protein at ER-PM contact sites’, published in BiO. Bishal is a PhD student in the lab of Professor Raghu Padinjat at National Center for Biological Sciences, Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India, investigating non-vesicular trafficking of lipids at interorganeller contact sites regulate cellular physiology.


2019 ◽  
Vol 218 (3) ◽  
pp. 1055-1065 ◽  
Author(s):  
Rossella Venditti ◽  
Laura Rita Rega ◽  
Maria Chiara Masone ◽  
Michele Santoro ◽  
Elena Polishchuk ◽  
...  

ER–TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.


2019 ◽  
Vol 218 (6) ◽  
pp. 1787-1798 ◽  
Author(s):  
Diana P. Valverde ◽  
Shenliang Yu ◽  
Venkata Boggavarapu ◽  
Nikit Kumar ◽  
Joshua A. Lees ◽  
...  

During macroautophagic stress, autophagosomes can be produced continuously and in high numbers. Many different organelles have been reported as potential donor membranes for this sustained autophagosome growth, but specific machinery to support the delivery of lipid to the growing autophagosome membrane has remained unknown. Here we show that the autophagy protein, ATG2, without a clear function since its discovery over 20 yr ago, is in fact a lipid-transfer protein likely operating at the ER–autophagosome interface. ATG2A can bind tens of glycerophospholipids at once and transfers lipids robustly in vitro. An N-terminal fragment of ATG2A that supports lipid transfer in vitro is both necessary and fully sufficient to rescue blocked autophagosome biogenesis in ATG2A/ATG2B KO cells, implying that regulation of lipid homeostasis is the major autophagy-dependent activity of this protein and, by extension, that protein-mediated lipid transfer across contact sites is a principal contributor to autophagosome formation.


2008 ◽  
Vol 19 (9) ◽  
pp. 3871-3884 ◽  
Author(s):  
Diego Peretti ◽  
Nili Dahan ◽  
Eyal Shimoni ◽  
Koret Hirschberg ◽  
Sima Lev

Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER–membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER–Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.


Sign in / Sign up

Export Citation Format

Share Document