scholarly journals Angulin-1 seals tricellular contacts independently of tricellulin and claudins

2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Taichi Sugawara ◽  
Kyoko Furuse ◽  
Tetsuhisa Otani ◽  
Tomohiko Wakayama ◽  
Mikio Furuse

Tricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1–deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The C terminus of angulin-1 bound to the TJ scaffold protein ZO-1, and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.

2020 ◽  
Author(s):  
Taichi Sugawara ◽  
Kyoko Furuse ◽  
Tetsuhisa Otani ◽  
Mikio Furuse

AbstractTricellular tight junctions (tTJs) are specialized tight junctions (TJs) that seal the intercellular space at tricellular contacts (TCs), where the vertices of three epithelial cells meet. Tricellulin and angulin family membrane proteins are known constituents of tTJs, but the molecular mechanism of tTJ formation remains elusive. Here, we investigated the roles of angulin-1 and tricellulin in tTJ formation in MDCK II cells by genome editing. Angulin-1-deficient cells lost the plasma membrane contact at TCs with impaired epithelial barrier function. The COOH-terminus of angulin-1 bound to the TJ scaffold protein ZO-1 and disruption of their interaction influenced the localization of claudins at TCs, but not the tricellular sealing. Strikingly, the plasma membrane contact at TCs was formed in tricellulin- or claudin-deficient cells. These findings demonstrate that angulin-1 is responsible for the plasma membrane seal at TCs independently of tricellulin and claudins.


2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3194
Author(s):  
Yutaka Suzuki ◽  
Sachi Chiba ◽  
Koki Nishihara ◽  
Keiichi Nakajima ◽  
Akihiko Hagino ◽  
...  

Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.


2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


2021 ◽  
Author(s):  
Yun Ji ◽  
Shuting Fang ◽  
Ying Yang ◽  
Zhenlong Wu

Abstract Background Nephrolithiasis (also known as renal stones) is a common disease condition in companion animals, including dogs and cats. Dysfunction of renal tubular epithelial cells involves in the pathogenesis of renal stones. However, a functional role of Wnt/β-catenin signaling and its contribution to nephrolithiasis remains unknown. Results In the present study, we found that Mardin-Darby canine kidney (MDCK) cells treated with sodium oxalate resulted in reduced cell proliferation and migration, which was associated with the G0/G1 phase arrest of cell cycle progression. In addition, sodium oxalate exposure led to decreased transepithelial electrical resistance (TEER) and increased paracellular permeability. The deleterious effect of sodium oxalate on epithelial barrier function was related to decreased protein abundances of claudin-1, occludin, zonula occludens (ZO)-1, ZO-2 and ZO-3. Of note, protein levels of p-β-catenin (Ser552) in MDCK cells were repressed by sodium oxalate, indicating an inhibitory effect on the Wnt/β-catenin signaling. Intriguingly, SB216763, a GSK-3β inhibitor, enhanced the expression p-β-catenin (Ser552), and protected against epithelial barrier dysfunction in sodium oxalate-treated MDCK cells. Conclusion Taken together, our results revealed a critical role of Wnt/β-catenin signaling on the epithelial barrier function of MDCK cells. Activation of Wnt/β-catenin signaling might be an potentially therapeutic target for the treatment of renal stones in animals.


Author(s):  
Luciën E.P.M. Van der Vlugt ◽  
Katrien Eger ◽  
Gimano D. Amatngalim ◽  
Christoph Müller ◽  
Franz Bracher ◽  
...  

2005 ◽  
Vol 288 (6) ◽  
pp. G1159-G1169 ◽  
Author(s):  
Xin Guo ◽  
Jaladanki N. Rao ◽  
Lan Liu ◽  
Tongtong Zou ◽  
Kaspar M. Keledjian ◽  
...  

Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by α-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca2+ concentration ([Ca2+]cyt), because either increased or decreased [Ca2+]cyt did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by ∼70% following polyamine depletion, whereas its protein half-life was reduced from ∼120 min in control cells to ∼75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin.


2005 ◽  
Vol 171 (6) ◽  
pp. 939-945 ◽  
Author(s):  
Junichi Ikenouchi ◽  
Mikio Furuse ◽  
Kyoko Furuse ◽  
Hiroyuki Sasaki ◽  
Sachiko Tsukita ◽  
...  

For epithelia to function as barriers, the intercellular space must be sealed. Sealing two adjacent cells at bicellular tight junctions (bTJs) is well described with the discovery of the claudins. Yet, there are still barrier weak points at tricellular contacts, where three cells join together. In this study, we identify tricellulin, the first integral membrane protein that is concentrated at the vertically oriented TJ strands of tricellular contacts. When tricellulin expression was suppressed with RNA interference, the epithelial barrier was compromised, and tricellular contacts and bTJs were disorganized. These findings indicate the critical function of tricellulin for formation of the epithelial barrier.


Sign in / Sign up

Export Citation Format

Share Document