scholarly journals Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly

2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Takumi Chinen ◽  
Kaho Yamazaki ◽  
Kaho Hashimoto ◽  
Ken Fujii ◽  
Koki Watanabe ◽  
...  

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.

2020 ◽  
Author(s):  
Takumi Chinen ◽  
Kaho Yamazaki ◽  
Kaho Hashimoto ◽  
Ken Fujii ◽  
Koki Watanabe ◽  
...  

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. While centrosomes facilitate bipolar spindle formation, the individual functions of the centriole and PCM in mitosis remain elusive. Herein, we show the redundant roles of the centriole and PCM in bipolar spindle formation in human cells. Upon depletion of the PCM scaffold components, pericentrin and CDK5RAP2, centrioles remained able to recruit CEP192 onto their walls, which was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the chemical perturbation of polo-like kinase 1, a critical kinase for PCM assembly, efficiently suppressed the proliferation of various cancer cell lines from which centrioles were removed. Overall, these data suggest that the centriole and PCM cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation in human cells.


2004 ◽  
Vol 15 (4) ◽  
pp. 1580-1590 ◽  
Author(s):  
Lynne Cassimeris ◽  
Justin Morabito

The XMAP215/Dis1 MAP family is thought to regulate microtubule plus-end assembly in part by antagonizing the catastrophe-promoting function of kin I kinesins, yet XMAP215/Dis1 proteins localize to centrosomes. We probed the mitotic function of TOGp (human homolog of XMAP215/Dis1) using siRNA. Cells lacking TOGp assembled multipolar spindles, confirming results of Gergely et al. (2003. Genes Dev. 17, 336–341). Eg5 motor activity was necessary to maintain the multipolar morphology. Depletion of TOGp decreased microtubule length and density in the spindle by ∼20%. Depletion of MCAK, a kin I kinesin, increased MT lengths and density by ∼20%, but did not disrupt spindle morphology. Mitotic cells lacking both TOGp and MCAK formed bipolar and monopolar spindles, indicating that TOGp and MCAK contribute to spindle bipolarity, without major effects on MT stability. TOGp localized to centrosomes in the absence of MTs and depletion of TOGp resulted in centrosome fragmentation. TOGp depletion also disrupted MT minus-end focus at the spindle poles, detected by localizations of NuMA and the p150 component of dynactin. The major functions of TOGp during mitosis are to focus MT minus ends at spindle poles, maintain centrosome integrity, and contribute to spindle bipolarity.


2019 ◽  
Vol 30 (22) ◽  
pp. 2802-2813 ◽  
Author(s):  
Yutaka Shirasugi ◽  
Masamitsu Sato

Bipolar spindles are organized by motor proteins that generate microtubule-­dependent forces to separate the two spindle poles. The fission yeast Cut7 (kinesin-5) is a plus-end-directed motor that generates the outward force to separate the two spindle poles, whereas the minus-end-directed motor Pkl1 (kinesin-14) generates the inward force. Balanced forces by these antagonizing kinesins are essential for bipolar spindle organization in mitosis. Here, we demonstrate that chromosomes generate another outward force that contributes to the bipolar spindle assembly. First, it was noted that the cut7 pkl1 double knockout failed to separate spindle poles in meiosis I, although the mutant is known to succeed it in mitosis. It was assumed that this might be because meiotic kinetochores of bivalent chromosomes joined by cross-overs generate weaker tensions in meiosis I than the strong tensions in mitosis generated by tightly tethered sister kinetochores. In line with this idea, when meiotic mono-oriented kinetochores were artificially converted to a mitotic bioriented layout, the cut7 pkl1 mutant successfully separated spindle poles in meiosis I. Therefore, we propose that spindle pole separation is promoted by outward forces transmitted from kinetochores to spindle poles through microtubules.


1986 ◽  
Vol 102 (5) ◽  
pp. 1679-1687 ◽  
Author(s):  
W Steffen ◽  
H Fuge ◽  
R Dietz ◽  
M Bastmeyer ◽  
G Müller

Tipulid spermatocytes form normally functioning bipolar spindles after one of the centrosomes is experimentally dislocated from the nucleus in late diakinesis (Dietz, R., 1959, Z. Naturforsch., 14b:749-752; Dietz, R., 1963, Zool. Anz. Suppl., 23:131-138; Dietz, R., 1966, Heredity, 19:161-166). The possibility that dissociated pericentriolar material (PCM) is nevertheless responsible for the formation of the spindle in these cells cannot be ruled out based on live observation. In studying serial sections of complete cells and of lysed cells, it was found that centrosome-free spindle poles in the crane fly show neither pericentriolar-like material nor aster microtubules, whereas the displaced centrosomes appear complete, i.e., consist of a centriole pair, aster microtubules, and PCM. Exposure to a lysis buffer containing tubulin resulted in an increase of centrosomal asters due to aster microtubule polymerization. Aster-free spindle poles did not show any reaction, also indicating the absence of PCM at these poles. The results favor the hypothesis of chromosome-induced spindle pole formation at the onset of prometaphase and the dispensability of PCM in Pales.


1995 ◽  
Vol 131 (5) ◽  
pp. 1125-1131 ◽  
Author(s):  
D Zhang ◽  
R B Nicklas

Chromosomes are known to enhance spindle microtubule assembly in grasshopper spermatocytes, which suggested to us that chromosomes might play an essential role in the initiation of spindle formation. Chromosomes might, for example, activate other spindle components such as centrosomes and tubulin subunits upon the breakdown of the nuclear envelope. We tested this possibility in living grasshopper spermatocytes. We ruptured the nuclear envelope during prophase, which prematurely exposed the centrosomes to chromosomes and nuclear sap. Spindle assembly was promptly initiated. In contrast, assembly of the spindle was completely inhibited if the nucleus was mechanically removed from a late prophase cell. Other experiments showed that the trigger for spindle assembly is associated with the chromosomes; other constituents of the nucleus cannot initiate spindle assembly in the absence of the chromosomes. The initiation of spindle assembly required centrosomes as well as chromosomes. Extracting centrosomes from late prophase cells completely inhibited spindle assembly after dissolution of the nuclear envelope. We conclude that the normal formation of a bipolar spindle in grasshopper spermatocytes is regulated by chromosomes. A possible explanation is an activator, perhaps a chromosomal protein (Yeo, J.-P., F. Alderuccio, and B.-H. Toh. 1994a. Nature (Lond.). 367: 288-291), that promotes and stabilizes the assembly of astral microtubules and thus promotes assembly of the spindle.


2015 ◽  
Vol 35 (15) ◽  
pp. 2626-2640 ◽  
Author(s):  
Lingjun Meng ◽  
Jung-Eun Park ◽  
Tae-Sung Kim ◽  
Eun Hye Lee ◽  
Suk-Youl Park ◽  
...  

Serving as microtubule-organizing centers, centrosomes play a key role in forming bipolar spindles. The mechanism of how centrosomes promote bipolar spindle assembly in various organisms remains largely unknown. A recent study withXenopus laevisegg extracts suggested that the Plk1 ortholog Plx1 interacts with the phospho-T46 (p-T46) motif ofXenopusCep192 (xCep192) to form an xCep192-mediated xAurA-Plx1 cascade that is critical for bipolar spindle formation. Here, we demonstrated that in cultured human cells, Cep192 recruits AurA and Plk1 in a cooperative manner, and this event is important for the reciprocal activation of AurA and Plk1. Strikingly, Plk1 interacted with Cep192 through either the p-T44 (analogous toXenopusp-T46) or the newly identified p-S995 motif via its C-terminal noncatalytic polo-box domain. The interaction between Plk1 and the p-T44 motif was prevalent in the presence of Cep192-bound AurA, whereas the interaction of Plk1 with the p-T995 motif was preferred in the absence of AurA binding. Notably, the loss of p-T44- and p-S995-dependent Cep192-Plk1 interactions induced an additive defect in recruiting Plk1 and γ-tubulin to centrosomes, which ultimately led to a failure in proper bipolar spindle formation and mitotic progression. Thus, we propose that Plk1 promotes centrosome-based bipolar spindle formation by forming two functionally nonredundant complexes with Cep192.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Franz Meitinger ◽  
Dong Kong ◽  
Midori Ohta ◽  
Arshad Desai ◽  
Karen Oegema ◽  
...  

Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Irsa Shoukat ◽  
Corey Frazer ◽  
John S. Allingham

ABSTRACT Mitotic spindles assume a bipolar architecture through the concerted actions of microtubules, motors, and cross-linking proteins. In most eukaryotes, kinesin-5 motors are essential to this process, and cells will fail to form a bipolar spindle without kinesin-5 activity. Remarkably, inactivation of kinesin-14 motors can rescue this kinesin-5 deficiency by reestablishing the balance of antagonistic forces needed to drive spindle pole separation and spindle assembly. We show that the yeast form of the opportunistic fungus Candida albicans assembles bipolar spindles in the absence of its sole kinesin-5, CaKip1, even though this motor exhibits stereotypical cell-cycle-dependent localization patterns within the mitotic spindle. However, cells lacking CaKip1 function have shorter metaphase spindles and longer and more numerous astral microtubules. They also show defective hyphal development. Interestingly, a small population of CaKip1-deficient spindles break apart and reform two bipolar spindles in a single nucleus. These spindles then separate, dividing the nucleus, and then elongate simultaneously in the mother and bud or across the bud neck, resulting in multinucleate cells. These data suggest that kinesin-5-independent mechanisms drive assembly and elongation of the mitotic spindle in C. albicans and that CaKip1 is important for bipolar spindle integrity. We also found that simultaneous loss of kinesin-5 and kinesin-14 (CaKar3Cik1) activity is lethal. This implies a divergence from the antagonistic force paradigm that has been ascribed to these motors, which could be linked to the high mitotic error rate that C. albicans experiences and often exploits as a generator of diversity. IMPORTANCE Candida albicans is one of the most prevalent fungal pathogens of humans and can infect a broad range of niches within its host. This organism frequently acquires resistance to antifungal agents through rapid generation of genetic diversity, with aneuploidy serving as a particularly important adaptive mechanism. This paper describes an investigation of the sole kinesin-5 in C. albicans, which is a major regulator of chromosome segregation. Contrary to other eukaryotes studied thus far, C. albicans does not require kinesin-5 function for bipolar spindle assembly or spindle elongation. Rather, this motor protein associates with the spindle throughout mitosis to maintain spindle integrity. Furthermore, kinesin-5 loss is synthetically lethal with loss of kinesin-14—canonically an opposing force producer to kinesin-5 in spindle assembly and anaphase. These results suggest a significant evolutionary rewiring of microtubule motor functions in the C. albicans mitotic spindle, which may have implications in the genetic instability of this pathogen.


2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


2020 ◽  
Vol 134 (1) ◽  
pp. jcs251025
Author(s):  
Zoë Geraghty ◽  
Christina Barnard ◽  
Pelin Uluocak ◽  
Ulrike Gruneberg

ABSTRACTErrors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin–kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule–kinetochore attachment. However, the molecular mechanisms by which astrin–kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule–kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule–kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.


Sign in / Sign up

Export Citation Format

Share Document