scholarly journals WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation

2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Amanda Guerreiro ◽  
Filipe De Sousa ◽  
Nicolas Liaudet ◽  
Daria Ivanova ◽  
Anja Eskat ◽  
...  

Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Chris A Smith ◽  
Andrew D McAinsh ◽  
Nigel J Burroughs

Chromosome segregation is a mechanical process that requires assembly of the mitotic spindle – a dynamic microtubule-based force-generating machine. Connections to this spindle are mediated by sister kinetochore pairs, that form dynamic end-on attachments to microtubules emanating from opposite spindle poles. This bi-orientation generates forces that have been reported to stretch the kinetochore itself, which has been suggested to stabilise attachment and silence the spindle checkpoint. We reveal using three dimensional tracking that the outer kinetochore domain can swivel around the inner kinetochore/centromere, which results in large reductions in intra-kinetochore distance (delta) when viewed in lower dimensions. We show that swivel provides a mechanical flexibility that enables kinetochores at the periphery of the spindle to engage microtubules. Swivel reduces as cells approach anaphase, suggesting an organisational change linked to checkpoint satisfaction and/or obligatory changes in kinetochore mechanochemistry may occur before dissolution of sister chromatid cohesion.


Author(s):  
Marcus A Begley ◽  
April L Solon ◽  
Elizabeth Mae Davis ◽  
Michael Grant Sherrill ◽  
Ryoma Ohi ◽  
...  

The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore-fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here, we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule crosslinker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors. [Media: see text] [Media: see text] [Media: see text]


2000 ◽  
Vol 113 (9) ◽  
pp. 1623-1633 ◽  
Author(s):  
K.P. McNally ◽  
O.A. Bazirgan ◽  
F.J. McNally

The assembly and function of the mitotic spindle requires the activity of a number of microtubule-binding proteins. Some microtubule-binding proteins bind microtubules in vitro but do not co-localize with microtubules in interphase cells. Instead these proteins associate with specific subregions of the mitotic spindle. Katanin, a heterodimeric microtubule-severing ATPase, is found localized at mitotic spindle poles. In this paper we demonstrate that human p60 katanin and the C-terminal domain of human p80 katanin both bind microtubules in vitro. Association of these two proteins results in an increased microtubule affinity and increased microtubule-severing activity in vitro. Association of these subunits in transfected HeLa cells increases microtubule disassembly activity and targeting to spindle poles. The N-terminal WD40 domain of p80 katanin acts as a negative regulator of microtubule disassembly activity and is also required for spindle pole localization, possibly through interactions with another spindle-pole protein. These results support a model in which katanin is targeted to spindle poles through a combination of direct microtubule binding by the p60 subunit and through interactions between the WD40 domain and an unknown protein. We propose that both domains of p80 are essential in precisely regulating katanin's activity in vivo.


2002 ◽  
Vol 1 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Ghia M. Euskirchen

ABSTRACT Previously, antibodies were raised against a nuclear envelope-enriched fraction of yeast, and the essential gene NNF1 was cloned by reverse genetics. Here it is shown that the conditional nnf1-17 mutant has decreased stability of a minichromosome in addition to mitotic spindle defects. I have identified the novel essential genes DSN1, DSN3, and NSL1 through genetic interactions with nnf1-17. Dsn3p was found to be equivalent to the kinetochore protein Mtw1p. By indirect immunofluorescence, all four proteins, Nnf1p, Mtw1p, Dsn1p, and Nsl1p, colocalize and are found in the region of the spindle poles. Based on the colocalization of these four proteins, the minichromosome instability and the spindle defects seen in nnf1 mutants, I propose that Nnf1p is part of a new group of proteins necessary for chromosome segregation.


2006 ◽  
Vol 175 (6) ◽  
pp. 881-891 ◽  
Author(s):  
Karen McNally ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Francis J. McNally

Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that γ-tubulin–dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.


2005 ◽  
Vol 360 (1455) ◽  
pp. 581-589 ◽  
Author(s):  
Tomoyuki U Tanaka

For proper chromosome segregation, sister kinetochores must attach to microtubules extending from opposite spindle poles prior to anaphase onset. This state is called sister kinetochore bi-orientation or chromosome bi-orientation. The mechanism ensuring chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent evidence suggests that mal-oriented kinetochore-to-pole connections are corrected in a tension-dependent mechanism. The cohesin complex and the Ipl1/Aurora B protein kinase seem to be key regulators for this correction. In this article, I discuss how cells ensure sister kinetochore bi-orientation for all chromosomes, mainly focusing on our recent findings in budding yeast.


2002 ◽  
Vol 115 (5) ◽  
pp. 1083-1092 ◽  
Author(s):  
Dan Buster ◽  
Karen McNally ◽  
Francis J. McNally

Katanin is a microtubule-severing protein that is concentrated at mitotic spindle poles but katanin's function in the mitotic spindle has not been previously reported. Inhibition of katanin with either of two dominant-negative proteins or a subunit-specific antibody prevented the redistribution of γ-tubulin from the centrosome to the spindle in prometaphase CV-1 cells as assayed by immunofluorescence microscopy. Becauseγ-tubulin complexes can bind to pre-existing microtubule minus ends,these results could be explained by a model in which the broad distribution ofγ-tubulin in the mitotic spindle is in part due to cytosolicγ-tubulin ring complexes binding to microtubule minus ends generated by katanin-mediated microtubule severing. Because microtubules depolymerize at their ends, we hypothesized that a greater number of microtubule ends generated by severing in the spindle would result in an increased rate of spindle disassembly when polymerization is blocked with nocodazole. Indeed,katanin inhibition slowed the rate of spindle microtubule disassembly in the presence of nocodazole. However, katanin inhibition did not affect the rate of exchange between polymerized and unpolymerized tubulin as assayed by fluorescence recovery after photobleaching. These results support a model in which katanin activity regulates the number of microtubule ends in the spindle.


2006 ◽  
Vol 17 (9) ◽  
pp. 4069-4079 ◽  
Author(s):  
Chad G. Pearson ◽  
Melissa K. Gardner ◽  
Leocadia V. Paliulis ◽  
E. D. Salmon ◽  
David J. Odde ◽  
...  

A computational model for the budding yeast mitotic spindle predicts a spatial gradient in tubulin turnover that is produced by kinetochore-attached microtubule (kMT) plus-end polymerization and depolymerization dynamics. However, kMTs in yeast are often much shorter than the resolution limit of the light microscope, making visualization of this gradient difficult. To overcome this limitation, we combined digital imaging of fluorescence redistribution after photobleaching (FRAP) with model convolution methods to compare computer simulations at nanometer scale resolution to microscopic data. We measured a gradient in microtubule dynamics in yeast spindles at ∼65-nm spatial intervals. Tubulin turnover is greatest near kinetochores and lowest near the spindle poles. A β-tubulin mutant with decreased plus-end dynamics preserves the spatial gradient in tubulin turnover at a slower time scale, increases average kinetochore microtubule length ∼14%, and decreases tension at kinetochores. The β-tubulin mutant cells have an increased frequency of chromosome loss, suggesting that the accuracy of chromosome segregation is linked to robust kMT plus-end dynamics.


2007 ◽  
Vol 177 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Dong Zhang ◽  
Gregory C. Rogers ◽  
Daniel W. Buster ◽  
David J. Sharp

Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the activities of three different microtubule severing enzymes, Spastin, Fidgetin, and Katanin. Spastin and Fidgetin are utilized to stimulate microtubule minus-end depolymerization and flux. Both proteins concentrate at centrosomes, where they catalyze the turnover of γ-tubulin, consistent with the hypothesis that they exert their influence by releasing stabilizing γ-tubulin ring complexes from minus ends. In contrast, Katanin appears to function primarily on anaphase chromosomes, where it stimulates microtubule plus-end depolymerization and Pacman-based chromatid motility. Collectively, these findings reveal novel and significant roles for microtubule severing within the spindle and broaden our understanding of the molecular machinery used to move chromosomes.


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document