scholarly journals REPLICATION OF NUCLEOLUS-ASSOCIATED DNA DURING "G2 PHASE" IN PHYSARUM POLYCEPHALUM

1969 ◽  
Vol 43 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Edmund Guttes ◽  
Sophie Guttes

In the myxomycete, Physarum polycephalum, the bulk of nuclear DNA replication occurs during a period of a few hours immediately following upon mitosis. During the remainder of the intermitotic period, incorporation of thymidine-3H continues at a low rate in the region of the nucleolus (radioautographs). A few nuclei incorporated thymidine-3H into the extranucleolar chromatin at a high rate at all times of the intermitotic period. These nuclei were exceptionally large and they frequently contained several small nucleoli of different sizes rather than the one, central nucleolus which is characteristic of a normal interphase nucleus.

1974 ◽  
Vol 15 (1) ◽  
pp. 131-143
Author(s):  
E. GUTTES

In the myxomycete, Physarum polycephalum, nuclear DNA synthesis commences immediately upon completion of mitosis. While the synthesis of extranucleolar DNA is completed within a few hours, nucleolar DNA synthesis occurs during most of the S-phase and the entire G2 phase of the intermitotic period. When large (polyploid), late-interphase nuclei were allowed to bypass mitosis by transplantation into recipient plasmodia which were at early interphase and which belonged to a strain having smaller nuclei, the nucleolar DNA of the transplanted nuclei continued to be labelled (autoradiographs) after incubation of the host plasmodia with [3H]thymidine until they entered prophase along with the nuclei of the host plasmodium, approximately one intermitotic period later. This labelling was DNase-sensitive and RNase-resistant. When late-interphase nuclei were labelled with [3H]thymidine just prior to transplantation, there was no decrease of label after transplantation during the additional intermitotic period. We conclude from these experiments that there is no obligatory alternation between nucleolar DNA duplication and mitosis in Physarum polycephalum and that nucleolar DNA replication might exhibit amplification during an experimentally prolonged intermitotic period.


1966 ◽  
Vol 31 (3) ◽  
pp. 577-583 ◽  
Author(s):  
J. E. Cummins ◽  
H. P. Rusch

Actidione (cycloheximide), an antibiotic inhibitor of protein synthesis, blocked the incorporation of leucine and lysine during the S phase of Physarum polycephalum. Actidione added during the early prophase period in which mitosis is blocked totally inhibited the initiation of DNA synthesis. Actidione treatment in late prophase, which permitted mitosis in the absence of protein synthesis, permitted initiation of a round of DNA replication making up between 20 and 30% of the unreplicated nuclear DNA. Actidione treatment during the S phase permitted a round of replication similar to the effect at the beginning of S. The DNA synthesized in the presence of actidione was replicated semiconservatively and was stable through at least the mitosis following antibiotic removal. Experiments in which fluorodeoxyuridine inhibition was followed by thymidine reversal in the presence of actidione suggest that the early rounds of DNA replication must be completed before later rounds are initiated.


1968 ◽  
Vol 37 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Sophie Guttes ◽  
Edmund Guttes

Nuclei in G2 phase of the slime mold Physarum polycephalum, when transplanted, by plasmodial coalescence, into an S-phase plasmodium, failed to start another round of DNA synthesis. In the reciprocal combination, S-phase nuclei in a G2-phase host continued DNA synthesis for several hours without appreciable decrease in rate. It is suggested that the beginning of DNA replication is determined by an event, either during or shortly after mitosis, which renders the chromosomes structurally competent for DNA replication.


1988 ◽  
Vol 91 (3) ◽  
pp. 389-399
Author(s):  
H. Jantzen ◽  
I. Schulze ◽  
M. Stohr

In Acanthamoeba, two different cell types are known. Trophozoites are generated in the mitotic division cycle, whereas cells committed at late G2 phase of the cell cycle develop into cysts in response to starvation. In this paper we study the role of timing of DNA replication in regulating development. The investigation was performed with cultures growing in a non-defined medium (ND cells) that show a high encystation competence and with cultures that have been growing in a chemically defined medium (D cells) for several years and show a low encystation competence. Bivariate DNA/BrdUrd distributions show that ND cells progress through a cycle in which the short replication phase occurs immediately and exclusively after prior completion of mitosis. These cells arrest at late G2 phase of the cell cycle during the stationary stage. In D cells, DNA replication and mitosis seem to be uncoupled, since replication takes place before as well as after mitosis. These cells arrest within their replication phase during the stationary stage. These findings indicate that D cells do not progress into late G2 phase of the cell cycle and hence do not have the competence for commitment. The alternate timing of DNA replication and the low encystation competence of D cells can be reversed by cultivation of these cells in ND medium. Synchronization experiments reveal that late G2 phase ND cells exhibit a low capacity for BrdUrd incorporation and growth after transfer into D medium, whereas ND cells of earlier phases of the cell cycle show premitotic incorporation of BrdUrd into nuclear DNA and growth. These findings suggest on the one hand that premitotic DNA synthesis is a prerequisite for growth of cells in D medium, and that there is a dependence of the induction of premitotic DNA synthesis on the cell cycle, and on the other hand that a reciprocal relationship exists between the capacity of premitotic DNA synthesis and commitment to differentiation.


1980 ◽  
Vol 8 (1) ◽  
pp. 10-12
Author(s):  
F. C. Brenner

Abstract Tread wear rates during first wear measured by groove depth and weight changes do not always agree. Sometimes, the groove depth method shows a high rate and the weight loss method a low rate. Reported here are experiments designed to determine if grooves show depth changes without wear. Four tires were measured before mounting on a wheel, after mounting and inflation, and after inflation and storage. The mounted and inflated tires showed shallower shoulder grooves and deeper center grooves than the unmounted tires. In a second experiment, tires were measured immediately after a tread wear test and then stored mounted for two weeks before remeasuring. Each groove became deeper, and there was no change in the crown radius of any tire.


2020 ◽  
Vol 2 (4) ◽  
pp. 89-92
Author(s):  
Muhammad Amir ◽  
Sabeera Afzal ◽  
Alia Ishaq

Polymerases were revealed first in 1970s. Most important to the modest perception the enzyme responsible for nuclear DNA replication that was pol , for DNA repair pol and for mitochondrial DNA replication pol  DNA construction and renovation done by DNA polymerases, so directing both the constancy and discrepancy of genetic information. Replication of genome initiate with DNA template-dependent fusion of small primers of RNA. This preliminary phase in replication of DNA demarcated as de novo primer synthesis which is catalyzed by specified polymerases known as primases. Sixteen diverse DNA-synthesizing enzymes about human perspective are devoted to replication, reparation, mutilation lenience, and inconsistency of nuclear DNA. But in dissimilarity, merely one DNA polymerase has been called in mitochondria. It has been suggest that PrimPol is extremely acting the roles by re-priming DNA replication in mitochondria to permit an effective and appropriate way replication to be accomplished. Investigations from a numeral of test site have significantly amplified our appreciative of the role, recruitment and regulation of the enzyme during DNA replication. Though, we are simply just start to increase in value the versatile roles that play PrimPol in eukaryote.


2021 ◽  
Vol 11 (10) ◽  
pp. 4630
Author(s):  
Alessandro Bonforte ◽  
Flavio Cannavò ◽  
Salvatore Gambino ◽  
Francesco Guglielmino

We propose a multi-temporal-scale analysis of ground deformation data using both high-rate tilt and GNSS measurements and the DInSAR and daily GNSS solutions in order to investigate a sequence of four paroxysmal episodes of the Voragine crater occurring in December 2015 at Mt. Etna (Italy). The analysis aimed at inferring the magma sources feeding a sequence of very violent eruptions, in order to understand the dynamics and to image the shallow feeding system of the volcano that enabled such a rapid magma accumulation and discharge. The high-rate data allowed us to constrain the sources responsible for the fast and violent dynamics of each paroxysm, while the cumulated deformation measured by DInSAR and daily GNSS solutions, over a period of 12 days encompassing the entire eruptive sequence, also showed the deeper part of the source involved in the considered period, where magma was stored. We defined the dynamics and rates of the magma transfer, with a middle-depth storage of gas-rich magma that charges, more or less continuously, a shallower level where magma stops temporarily, accumulating pressure due to the gas exsolution. This machine-gun-like mechanism could represent a general conceptual model for similar events at Etna and at all volcanoes.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


Neurosurgery ◽  
2006 ◽  
Vol 59 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Anne Donnet ◽  
Manabu Tamura ◽  
Dominique Valade ◽  
Jean Régis

Abstract OBJECTIVE We have previously reported short-term results of a prospective open trial designed to evaluate trigeminal nerve radiosurgical treatment in intractable chronic cluster headache (CCH). Medium- and long-term results have not yet been reported. METHODS Ten patients presenting with a severe and drug-resistant CCH were enrolled (nine men, one woman). The radiosurgical treatment was performed according to the technique usually used for trigeminal neuralgia in our department. A single 4-mm shot was positioned at the level of the cisternal portion of the trigeminal nerve. The median distance between the center of the shot and the emergence of the nerve was 9.35 mm (range, 7.5–13.3 mm). The median of this maximum dose to the brainstem was 8.0 Gy (range, 4.0–11.1 Gy). Mean age was 49.8 years (range, 32–77 yr). Mean duration of the CCH was 9 years (range, 2–33 yr). The mean follow-up period was 36.3 months (range, 24–48 mo). RESULTS Two patients had complete relief of CCH. One patient had a good result with evolution in an episodic form. Seven patients had no improvement. Nine patients developed a new trigeminal nerve disturbance: three developed paresthesia with no hypoesthesia and six developed hypoesthesia, including two patients with deafferentation pain. Only one patient had neither paresthesia nor hypoesthesia. CONCLUSION We confirmed, with medium- and long-term evaluation, the high rate of toxicity and failure of the technique. The high toxicity, despite a methodology identical to the one used in trigeminal neuralgia, leads us to suspect an underlying specificity of the nerve in CCH. We do not recommend radiosurgery for treatment of intractable CCH.


Sign in / Sign up

Export Citation Format

Share Document