scholarly journals LE COMPLEXE MEMBRANAIRE SUPERFICIEL ET SON EVOLUTION LORS DE L'ELABORATION DES INDIVIDUS-FILS CHEZ TOXOPLASMA GONDII

1969 ◽  
Vol 43 (2) ◽  
pp. 329-342 ◽  
Author(s):  
Emile Vivier ◽  
André Petitprez

The parasitic protozoan Toxoplasma gondii has been examined with the electron microscope in order to study the fine structure and the formation of the membranes surrounding the cell. The study of the ultrastructure of the membranes covering the parasite shows the existence of a three-membraned complex. Only the outer membrane is considered to be the plasma membrane; the two membranes below it form an inseparable whole of changeable molecular architecture (modifications in appearance depending on the methods of fixation, local differentiation). During reproduction, which takes place by fission or more often by endogeny, the membranes of the daughter individuals are formed from the membranes of the parent. At first the middle and inner membranes of the parent extend, separating the cytoplasm of the daughter cells from that of the parent. The three-membrane complex of the endozoites is completed at the time of their liberation; the external membrane of the parent covers the leaving endozoites; thus, the plasma membrane of the daughter cells derives also from that of the parent. These findings on the origin and role of limiting membranes during reproduction differ entirely from those described so far for other cells.

1967 ◽  
Vol 35 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Jack L. Pate ◽  
Erling J. Ordal

An electron microscope study of the myxobacterium Chondrococcus columnaris has revealed the following structures in the peripheral layers of the cells: (1) a plasma membrane, (2) a single dense layer (probably the mucopeptide component of the cell wall), (3) peripheral fibrils, (4) an outer membrane, and (5) a material coating the surfaces of the cells which could be stained with the dye ruthenium red.The ruthenium red-positive material is probably an acid mucopolysaccharide and may be involved in the adhesive properties of the cells. The outer membrane and plasma membrane both have the appearance of unit membranes: an electron-translucent layer sandwiched between two electron-opaque layers. The peripheral fibrils span the gap between the outer membrane and the mucopeptide layer, a distance of about 100 A, and run parallel to each other along the length of the cell. The fibrils appear to be continuous across the ends of the cells. The location of these fibrillar structures suggests that they may play a role in the gliding motility of these bacteria.


1971 ◽  
Vol 49 (3) ◽  
pp. 747-772 ◽  
Author(s):  
Barbara Szubinska

Changes in the plasma membrane complex following the injury of single cells of Amoeba proteus were examined with the electron microscope. Two types of injury were employed in this study; cells were either pinched ("cut") in half or speared with a glass microneedle, and quickly fixed. Speared cells, when fixed in the presence of the ruthenium violet (a derivative of ruthenium red), revealed the presence of an extra trilaminar structure outside of each cell. This structure, called the "new membrane," was separated from the plasma membrane complex by a distance of less than a micron. The trilaminar structure of the new membrane strikingly resembled the image of the plasma membrane in all cells examined, except for its increased width (30%). This new membrane appeared nearly to surround the injured amebae. Attempts were made to demonstrate the possible origin of the new membrane, its reality, and its sensitivity to calcium. Also, some evidence is shown concerning the role of the small dense droplets (100–1200 A in diameter) normally present in the cytoplasm of amebae. Their frequent contact with the plasma membrane of the cell as the result of injury is interpreted as indicating their involvement in the formation and expansion of the plasma membrane.


2001 ◽  
Vol 155 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Frédéric Delbac ◽  
Astrid Sänger ◽  
Eva M. Neuhaus ◽  
Rolf Stratmann ◽  
James W. Ajioka ◽  
...  

In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.


2008 ◽  
Vol 7 (9) ◽  
pp. 1500-1512 ◽  
Author(s):  
Jennifer L. Gordon ◽  
Wandy L. Beatty ◽  
L. David Sibley

ABSTRACT Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.


1962 ◽  
Vol 13 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Robert C. Buck ◽  
James M. Tisdale

The development of the mid-body has been studied in mitotic erythroblasts of the rat bone marrow by means of thin sections examined with the electron microscope. A differentiated region on the continuous spindle fibers, consisting of a localized increase in density, is observed at the equatorial plane. The mid-body seems to develop by the aggregation of such denser lengths of spindle fiber. Its appearance precedes that of the cleavage furrow. A plate-like arrangement of fibrillary material lies transversely across the telophase intercellular bridge. Later, this material becomes amorphous and assumes the form of a dense ring closely applied to a ridge in the plasma membrane encircling the middle of the bridge. Although the mid-body forms in association with the spindle fibers, it is a structurally distinct part, and the changes which it undergoes are not shared by the rest of the bundle of continuous fibers.


1967 ◽  
Vol 34 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Raúl Hinojosa ◽  
J. David Robertson

The fine structure of the "spoon" type synaptic endings of the chick tangential nucleus was studied with the electron microscope. These endings often measure ∼18 µ in length by ∼3–4 µ in width. The axoplasm of the endings contains very few synaptic vesicles, a large number of neurofilaments oriented parallel to the long axis of the nerve fiber, and microtubules and numerous mitochondria. The synaptic membrane complex shows areas of localized occlusion of the synaptic cleft with the formation of an external compound membrane. It has not been decided whether these areas have a disc shape; their length measures between 0.04 and 0.47 µ. The five-layer pattern characteristic of an external compound membrane is shown in specimens fixed with formalin—OsO4, glutaraldehyde—acrolein—OsO4, and acrolein KMnO4 but it does not appear in the glutaraldehyde-OsO4-fixed specimens. The over-all thickness of the external compound membrane varies depending upon the fixative used. The synaptic clefts in the regions between the external compound membrane discs are widened and measure ∼300 A. A condensation of dense material occurs in pre- and postsynaptic cytoplasms all along the synaptic membrane complex. The morphological relationships described in the spoon endings are suggestive of electrical transmission.


Nuclear pores have been studied with the electron microscope in thin sections of pollen mother cells at early- to mid-meiotic prophase ( a ) in respect of distribution, ( b ) in relation to fine structure in the pore complex in the following plants: Fritillaria lanceolata, Phaedranassa viridijlora, Tulbaghia violacea , an F 1 hybrid of Allium fisultosum x Allium cepa and the lily var. 'Formobel'. In all plants from leptotene to pachytene, the pores were irregularly spread over the envelope in random clusters of variable size encircled by areas in which they did not occur. Further proof was obtained from the lily for the premise that pores are not formed in regions of the envelope to which the nucleolus is adpressed at leptotene. The fine structure of the pore complex observed supports a model which proposes that annuli are composed of three rings of eight granular subunits. Most pores contained a central granule ranging from 25 to 30 nm in diameter composed of amorphous substance and filaments about 3 nm wide, apparently continuous with filaments of similar dimensions in the symmetrical annular subunits that encircle the orifice at both the nuclear and cytoplasmic sides of the pore. The pore complex and central granule were relatively more stable to osmotic shock than the ribosomal region of the nucleolus. Recent ideas concerning the role of the annulus and central granule in nucleocytoplasmic transfer of ribonucleoprotein and assembly of polyribosomes are discussed.


1959 ◽  
Vol 5 (2) ◽  
pp. 241-244 ◽  
Author(s):  
George A. Edwards

The detailed structure of nerve branches, neuromuscular junctions, and muscle fibers of a multiterminal innervation of cockroach abdominal muscle has been studied with the electron microscope. The muscle fiber is of the banded myofibril type; with paired mitochondria and abundant endoplasmic reticulum. The peripheral nerve branches are multiaxonal with large central axon and several small peripheral tunicated axons. Tracheoblasts closely accompany the nerve branches. The multiple neuromuscular junctions show typical axonal vesicles, muscle aposynaptic granules, and close plasma membrane apposition with no interposition of basement membrane material.


1999 ◽  
Vol 181 (15) ◽  
pp. 4476-4484 ◽  
Author(s):  
Laure Journet ◽  
Alain Rigal ◽  
Claude Lazdunski ◽  
Hélène Bénédetti

ABSTRACT The Tol-PAL system of Escherichia coli is a multiprotein system involved in maintaining the cell envelope integrity and is necessary for the import of some colicins and phage DNA into the bacterium. It is organized into two complexes, one near the outer membrane between TolB and PAL and one in the cytoplasmic membrane between TolA, TolQ, and TolR. In the cytoplasmic membrane, all of the Tol proteins have been shown to interact with each other. Cross-linking experiments have shown that the TolA transmembrane domain interacts with TolQ and TolR. Suppressor mutant analyses have localized the TolQ-TolA interaction to the first transmembrane domain of TolQ and have shown that the third transmembrane domain of TolQ interacts with the transmembrane domain of TolR. To get insights on the composition of the cytoplasmic membrane complex and its possible contacts with the outer membrane complex, we focused our attention on TolR. Cross-linking and immunoprecipitation experiments allowed the identification of Tol proteins interacting with TolR. The interactions of TolR with TolA and TolQ were confirmed, TolR was shown to dimerize, and the resulting dimer was shown to interact with TolQ. Deletion mutants of TolR were constructed, and they allowed us to determine the TolR domains involved in each interaction. The TolR transmembrane domain was shown to be involved in the TolA-TolR and TolQ-TolR interactions, while TolR central and C-terminal domains appeared to be involved in TolR dimerization. The role of the TolR C-terminal domain in the TolA-TolR interaction and its association with the membranes was also demonstrated. Furthermore, phenotypic studies clearly showed that the three TolR domains (N terminal, central, and C terminal) and the level of TolR production are important for colicin A import and for the maintenance of cell envelope integrity.


1965 ◽  
Vol 43 (11) ◽  
pp. 1329-1333 ◽  
Author(s):  
M. S. Manocha

The fine structure in the carpophore of the mushroom, Agaricus campestris, was studied with the electron microscope. The stipe consists of two types of cells (i) fundamental and (ii) long and thread-like. The pileus contains only the first type. The tramal cells of the gills are more elongated than broad, regularly arranged, and rich in cytoplasmic contents. The cross wall of the hyphal cells shows a conspicuous pore apparatus with dark septal swellings encased in the plasma membrane. The nuclear membranes are differentiated early during nuclear division and are highly alveolated around the interphase nucleus. In the maturing basidium, the mitochondria increase in number by division of pre-existing ones, and thus become small with few cristae. Numerous vacuoles appear in the upper portion of the basidium. Oil globules are also produced in the mature basidium but were not observed during the early stages of development of the basidium or in any other part of the carpophore. The young basidium has food reserve which is granular in nature. The basidiospore contains numerous large oil globules, few mitochondria, scanty endoplasmic reticulum, and a wall of three well-defined layers.


Sign in / Sign up

Export Citation Format

Share Document