scholarly journals INTRACELLULAR SYNTHESIS, TRANSPORT, AND PACKAGING OF PROTEINACEOUS YOLK IN OOCYTES OF ORCONECTES IMMUNIS

1972 ◽  
Vol 52 (2) ◽  
pp. 420-437 ◽  
Author(s):  
L. R. Ganion ◽  
R. G. Kessel

The incorporation of leucine-3H into either ovarian or oocyte proteins occurs throughout vitellogenesis, but is at a maximum during early phases of this process. The labeling of ovarian and oocyte proteins is inhibited with cycloheximide. Oocytes are permeable to actinomycin D, and this drug does not affect the incorporation of amino acids into oocyte proteins but does block oocyte RNA synthesis. By means of both light microscope and high resolution radioautography, it has been demonstrated that the initial incorporation of leucine-3H under both in vitro and in vivo conditions occurs in elements of the rough-surfaced endoplasmic reticulum in the oocyte. Under pulse-chase conditions, the label subsequently becomes associated with intracisternal (precursor yolk) granules now aggregated within the cisternae of the connected smooth-surfaced endoplasmic reticulum. By 7 days, mature yolk globules are extensively labeled. The results of experiments designed to assess the possible contribution of maternal blood proteins to yolk deposition indicate that such a contribution is minimal. It is concluded that the crayfish oocyte is programmed for and capable of synthesizing the massive store of proteinaceous yolk present in the egg at the end of oogenesis.

1982 ◽  
Vol 152 (3) ◽  
pp. 1117-1125
Author(s):  
J M Leventhal ◽  
G H Chambliss

The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.


1976 ◽  
Vol 83 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Mario A. Pisarev ◽  
Leonardo O. Aiello ◽  
Diana L. Kleiman de Pisarev

ABSTRACT Potassium iodide (KI) has been shown to impair thyroid protein biosynthesis both in vivo and in vitro. The present study was performed in order to clarify its mechanism of action. Ribonucleic acid (RNA) synthesis was studied in beef thyroid slices with either [32P] or [3H]-uridine as labelled precursors. Both KI and thyroxine (T4) at 10−5 m significantly decreased RNA labelling under our conditions. In other experiments RNA degradation was examined in pulse-labelled and actinomycin D-treated slices. KI did not modify the degradation of the [3H]-RNA thus indicating that it interferes with the biosynthesis rather than with the degradation of RNA. Taking the perchloric acid soluble radioactivity as a rough index of the precursor pool the present results would indicate an action at this level. Both KClO4 and methylmercapto-imidazole relieved the gland from the inhibitory action of KI, supporting the view that an intracellular and organified form of iodine is responsible for this action. Since T4 also reproduced the effects of KI on RNA synthesis we would like to propose iodothyronines as the intermediates of this action. Cyclic AMP has been shown to stimulate thyroid protein biosynthesis. The present results demonstrate an action at the RNA level. Cyclic AMP increased both the PCA-soluble and RNA-linked radioactivity, thus suggesting an effect at the RNA precursor pool. KI at 10−5 m blocked the action of 2 mm cyclic AMP.


1976 ◽  
Vol 70 (3) ◽  
pp. 573-580 ◽  
Author(s):  
U Lönn ◽  
J E Edström

Analysis in insect (Chironomus tentans) salivary gland cells of labeled RNA as a function of time after precursor injection and its distance to the nuclear membrane, cytoplasmic zone analysis, could previously be used to demonstrate the presence of short-lasting gradients in newly labeled ribosomal RNA. Since the gradients were sensitive to puromycin, they are likely to be a result of diffusion restriction due to an engagement of the subunits into polysomes. In the present paper the possibility was explored of recording gradients that were caused by labeled subunits in puromycin-resistant associations, which, in all probability, involve the endoplasmic reticulum. It was found that labeled 28 S and 5 S RNA but not 18 S RNA were present in radioactivity gradients lasting for at least 2 days but less than 6 days. The gradients also remained during inhibition of RNA synthesis by actinomycin, and they were completely resistant to puromycin whether given in vivo or in vitro. The semipermanent gradients formed fhere offer a unique parameter for the in vivo study of conditions for formation and maintenance of heavy subunits in puromycin-resistant bonds. An explanation for these and previous results is that the light subunit, although restricted in movement by engagement to polysomes, is nevertheless free to exchange and spread between rounds of translation, whereas at least part of the heavy subunit population is bound to the endoplasmic reticulum and less free to spread. These results offer a good in vivo correlate to previous results on in vitro exchangeability of subunits.


Reproduction ◽  
2017 ◽  
Vol 153 (4) ◽  
pp. 369-380 ◽  
Author(s):  
Bryanne N Colvin ◽  
Mark S Longtine ◽  
Baosheng Chen ◽  
Maria Laura Costa ◽  
D Michael Nelson

Pre-pregnancy obesity is increasingly common and predisposes pregnant women and offspring to gestational diabetes, pre-eclampsia, fetal growth abnormalities and stillbirth. Obese women exhibit elevated levels of the two most common dietary fatty acids, palmitate and oleate, and the maternal blood containing these nutrients bathes the surface of trophoblasts of placental villi in vivo. We test the hypothesis that the composition and concentration of free fatty acids modulate viability and function of primary human villous trophoblasts in culture. We found that palmitate increases syncytiotrophoblast death, specifically by caspase-mediated apoptosis, whereas oleate does not cause enhanced cell death. Importantly, exposure to both fatty acids in equimolar amounts yielded no increase in death or apoptosis, suggesting that oleate can protect syncytiotrophoblasts from palmitate-induced death. We further found that palmitate, but not oleate or oleate with palmitate, increases endoplasmic reticulum (ER) stress, signaling through the unfolded protein response, and yielding CHOP-mediated induction of apoptosis. Finally, we show that oleate or oleate plus palmitate both lead to increased lipid droplets in syncytiotrophoblasts, whereas palmitate does not. The data show palmitate is toxic to human syncytiotrophoblasts, through the induction of ER stress and apoptosis mediated by CHOP, whereas oleate is not toxic, abrogates palmitate toxicity and induces fat accumulation. We speculate that our in vitro results offer pathways by which the metabolic milieu of the obese pregnant woman can yield villous trophoblast dysfunction and sub-optimal placental function.


1970 ◽  
Vol 46 (3) ◽  
pp. 491-504 ◽  
Author(s):  
John Walberg Anderson ◽  
Milton B. Yatvin

Frog ovarian fragments were prevented from ovulating in vitro by the addition of actinomycin D up to 3 hr following pituitary stimulation; but addition of Actinomycin D 6 hr after stimulation was far less effective. Puromycin, on the other hand, effectively inhibited ovulation when added as late as 6 hr after pituitary stimulation. Although actinomycin D reduced uptake of uridine-3H, and puromycin reduced uptake of leucine-3H and lysine-14 by pituitary-stimulated ovarian tissue minus oocytes (OTMO) in vitro, it was found that pituitary stimulation did not significantly increase uptake of these compounds by OTMO. Radioautographs of ovarian follicles fixed 6 hr after the addition of pituitary extract and uridine-3H in vitro revealed increased RNA synthesis in the peritoneal surface epithelium, compared with unstimulated controls, while the ovarian sac epithelium showed no increase. Gross ultrastructural changes occurred in the peritoneal area of ovarian follicles following pituitary stimulation in vivo, including loss of collagen fibrils, and general disorganization of the connective tissue theca. Changes in the rough endoplasmic reticulum of the peritoneal epithelial cells, while frequently encountered, were less pronounced. None of these changes was observed in the ovarian sac area, or in the interfollicular region. The above data are consistent with the hypothesis that pituitary stimulation of the frog ovary results in increased synthesis of RNA and protein by the peritoneal epithelial cells, and that the protein may be collagenase.


1977 ◽  
Vol 168 (1) ◽  
pp. 23-31 ◽  
Author(s):  
J. Anton Grootegoed ◽  
Anne H. Grollé-Hey ◽  
Focko F. G. Rommerts ◽  
Henk J. Van Der Molen

The incorporation of [3H]uridine into RNA was studied quantitatively (by incorporation of [3H]uridine into acid-precipitable material) and qualitatively (by phenol extraction and electrophoretic separation of RNA in polyacrylamide gels) in preparations enriched in primary spermatocytes, obtained from testes of rats 26 or 32 days old. The rate of incorporation of [3H]uridine into RNA of isolated spermatocytes was constant during the first 8h of incubation, after which it decreased, but the decreased rate of incorporation was not reflected in a marked change in electrophoretic profiles of labelled RNA. In isolated spermatocytes, [3H]uridine was incorporated mainly into heterogeneous RNA with a low electrophoretic mobility. Most of this RNA was labile, as shown when further RNA synthesis was inhibited with actinomycin D. Spermatocytes in vivo also synthesized heterogeneous RNA with a low electrophoretic mobility. A low rate of incorporation of [3H]uridine into rRNA of isolated spermatocytes was observed. The cleavage of 32S precursor rRNA to 28S rRNA was probably retarded in spermatocytes in vitro as well as in vivo. RNA synthesis by preparations enriched in early spermatids or Sertoli cells was qualitatatively different from RNA synthesis by the spermatocyte preparations. It is concluded that isolated primary spermatocytes maintain a specific pattern of RNA synthesis, which resembles RNA synthesis in spermatocytes in vivo. Therefore isolated spermatocytes of the rat can be used for studying the possible regulation of RNA synthesis during the meiotic prophase.


Author(s):  
Awtar Krishan ◽  
Dora Hsu

Cells exposed to antitumor plant alkaloids, vinblastine and vincristine sulfate have large proteinacious crystals and complexes of ribosomes, helical polyribosomes and electron-dense granular material (ribosomal complexes) in their cytoplasm, Binding of H3-colchicine by the in vivo crystals shows that they contain microtubular proteins. Association of ribosomal complexes with the crystals suggests that these structures may be interrelated.In the present study cultured human leukemic lymphoblasts (CCRF-CEM), were incubated with protein and RNA-synthesis inhibitors, p. fluorophenylalanine, puromycin, cycloheximide or actinomycin-D before the addition of crystal-inducing doses of vinblastine to the culture medium. None of these compounds could completely prevent the formation of the ribosomal complexes or the crystals. However, in cells pre-incubated with puromycin, cycloheximide, or actinomycin-D, a reduction in the number and size of the ribosomal complexes was seen. Large helical polyribosomes were absent in the ribosomal complexes of cells treated with puromycin, while in cells exposed to cycloheximide, there was an apparent reduction in the number of ribosomes associated with the ribosomal complexes (Fig. 2).


1972 ◽  
Vol 70 (4) ◽  
pp. 741-757
Author(s):  
Otto Linèt

ABSTRACT Rat adrenal glands atrophied by the administration of cortisol acetate in vivo were used as a model for the study of early metabolic processes occurring in vitro. Atrophied adrenals incubated in the presence of 14C-leucine incorporated subnormal quantities of this amino acid per mg of protein for the first 120 min. When the incubation lasted for a total period of 180 or 240 min a supranormal rise in the 14C-leucine incorporation was observed. Similar changes occurred with some delay with regard to corticosterone production as expressed per 100 mg of tissue. No differences in 14C-leucine incorporation were observed between the control and atrophied adrenals in vivo. Homogenates from atrophied glands incorporated 14C-leucine to a greater extent than the control homogenates. The in vitro incorporation of 14C-orotic acid into the RNA was also higher in atrophied adrenals. The in vitro use of actinomycin D, cycloheximide and amphenone indicated that corticosterone production depended on the incorporation of 14C-leucine. The addition of cortisol to the incubation media markedly decreased the enhancement of 14C-lysine incorporation into the protein of atrophied adrenals. These, as well as additional results suggest rebound phenomena: once atrophic adrenals are transferred to cortisol-free media, reparative processes begin after a delay period. Such phenomena seem to be mediated by regulatory mechanisms at the adrenal level.


1995 ◽  
Vol 60 (12) ◽  
pp. 2170-2177 ◽  
Author(s):  
Zdenko Procházka ◽  
Jiřina Slaninová
Keyword(s):  

Solid phase technique on p-methylbenzhydrylamine resin was used for the synthesis of four analogs of oxytocin and four analogs of vasopressin with the non-coded amino acids L- or D- and 1- or 2-naphthylalanine and D-homoarginine. [L-1-Nal2]oxytocin, [D-1-Nal2]oxytocin, [L-2-Nal2]oxytocin, [D-2-Nal2]oxytocin, [L-1-Nal2, D-Har8]vasopressin, [D-1-Nal2, D-Har8]vasopressin, [L-2-Nal2, D-Har8]vasopressin and [D-2-Nal2, D-Har8]vasopressin were synthesized. All eight analogs were found to be uterotonic inhibitors in vitro and in vivo. Analogs with 2-naphthylalanine are stronger inhibitors, particularly in the vasopressin series than the analogs with 1-naphthylalanine. Analogs with 1-naphthylalanine have no activity in the pressor test, analogs with 2-naphthylalanine are weak pressor inhibitors.


Sign in / Sign up

Export Citation Format

Share Document