scholarly journals MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS

1973 ◽  
Vol 56 (2) ◽  
pp. 340-359 ◽  
Author(s):  
G. Benjamin Bouck ◽  
David L. Brown

In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Gheorghe Cojoc ◽  
Ana-Maria Florescu ◽  
Alexander Krull ◽  
Anna H. Klemm ◽  
Nenad Pavin ◽  
...  

Abstract Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.


2019 ◽  
Author(s):  
Clint S. Ko ◽  
Prateek Kalakuntla ◽  
Adam C. Martin

AbstractDuring development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled non-mitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.


2006 ◽  
Vol 173 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Susan L. Kline ◽  
Iain M. Cheeseman ◽  
Tetsuya Hori ◽  
Tatsuo Fukagawa ◽  
Arshad Desai

During cell division, kinetochores form the primary chromosomal attachment sites for spindle microtubules. We previously identified a network of 10 interacting kinetochore proteins conserved between Caenorhabditis elegans and humans. In this study, we investigate three proteins in the human network (hDsn1Q9H410, hNnf1PMF1, and hNsl1DC31). Using coexpression in bacteria and fractionation of mitotic extracts, we demonstrate that these proteins form a stable complex with the conserved kinetochore component hMis12. Human or chicken cells depleted of Mis12 complex subunits are delayed in mitosis with misaligned chromosomes and defects in chromosome biorientation. Aligned chromosomes exhibited reduced centromere stretch and diminished kinetochore microtubule bundles. Consistent with this, localization of the outer plate constituent Ndc80HEC1 was severely reduced. The checkpoint protein BubR1, the fibrous corona component centromere protein (CENP) E, and the inner kinetochore proteins CENP-A and CENP-H also failed to accumulate to wild-type levels in depleted cells. These results indicate that a four-subunit Mis12 complex plays an essential role in chromosome segregation in vertebrates and contributes to mitotic kinetochore assembly.


2010 ◽  
Vol 344 (1) ◽  
pp. 473
Author(s):  
Dennis A. Ridenour ◽  
Katherine W. Prather ◽  
Rebecca McLennan ◽  
Zachary Warren ◽  
Paul M. Kulesa

2017 ◽  
Author(s):  
Xiaolong Liu ◽  
Nils Y. Meiresonne ◽  
Ahmed Bouhss ◽  
Tanneke den Blaauwen

AbstractPeptidoglycan (PG) is the unique cell shape-determining component of the bacterial envelope, and is a key target for antibiotics. PG synthesis requires the transmembrane movement of the precursor lipid II, and MurJ has been shown to provide this activity inE. coli.However, how MurJ functionsin vivohas not been reported. Here we show that MurJ localizes both in the lateral membrane and at midcell, and is recruited to midcell simultaneously with late-localizing divisome proteins and proteins MraY and MurG. MurJ septal localization is dependent on the presence of a complete and active divisome, lipid II synthesis and PBP3/FtsW activities. Inactivation of MurJ, either directly by mutation or through binding with MTSES, did not affect the midcell localization of MurJ. Our study visualizes MurJ localizationin vivoand reveals a possible mechanism of how MurJ functions during cell division, which gives possibilities for future investigations and further antibiotics developments.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Karamtzioti ◽  
G Tiscornia ◽  
D Garcia ◽  
A Rodriguez ◽  
I Vernos ◽  
...  

Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable


1999 ◽  
Vol 22 (3) ◽  
pp. 309-313 ◽  
Author(s):  
Cristina de Andrade-Monteiro ◽  
Nilce M. Martinez-Rossi

Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent) dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants) have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.


1978 ◽  
Vol 78 (2) ◽  
pp. 401-414 ◽  
Author(s):  
J S Hyams ◽  
G G Borisy

Spindle pole bodies (SPBs) were isolated from the yeast Saccharomyces cerevisiae by an adaptation of the Kleinschmidt monolayer technique. Spheroplasts prepared from the cells were lysed on an air-water interface. Spread preparations were picked up on grids, transferred to experimental test solutions, and prepared for whole-mount electron microscopy. Using purified exogenous tubulin from porcine brain tissue, the isolated SPBs were shown to nucleate the assembly of microtubules in vitro. Microtubule growth was directional and primarily onto the intranuclear face of the SPB. Neither the morphology nor the microtubule-initiating capacity of the SPB was affected by treatment with the enzymes DNase, RNase, or phospholipase although both properties were sensitive to trypsin. Analysis of SPBs at various stages of the cell cycle showed that newly replicated SPBs had the capacity to nucleate microtubules. SPBs isolated from exponentially growing cells initiated a subset of the yeast spindle microtubules equivalent to the number of pole-to-pole microtubules seen in vivo. However, SPBs isolated from cells in stationary phase and therefore arrested in G1 nucleated a number of microtubules equal to the total chromosomal and pole-to-pole tubules in the yeast spindle. This may mean that in G1-arrested cells, the SPB is associated with microtubule attachment sites of the yeast chromatin.


2018 ◽  
Author(s):  
Elena Scarpa ◽  
Cédric Finet ◽  
Guy Blanchard ◽  
Bénédicte Sanson

AbstractDuring animal development, planar polarization of the actomyosin cytoskeleton underlies key morphogenetic events such as axis extension and boundary formation. Actomyosin is enriched along compartment boundaries during segmentation of the Drosophila embryo, forming supracellular contractile cables that keep cells segregated at boundaries. Here, we show that these contractile actomyosin cables bias the orientation of division in cells in contact with compartment boundaries. By decreasing actomyosin cable tension locally using laser ablation or, conversely ectopically increasing tension using laser wounding, we demonstrate that localised subcellular force is necessary and sufficient to orient mitoses in vivo. Moreover this bias is independent of cell geometry and involves capture of the spindle pole by the actomyosin cortex.


1998 ◽  
Vol 143 (4) ◽  
pp. 1029-1040 ◽  
Author(s):  
Christian Hofmann ◽  
Iain M. Cheeseman ◽  
Bruce L. Goode ◽  
Kent L. McDonald ◽  
Georjana Barnes ◽  
...  

In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis.


Sign in / Sign up

Export Citation Format

Share Document