scholarly journals Nucleation of microtubules in vitro by isolated spindle pole bodies of the yeast Saccharomyces cerevisiae.

1978 ◽  
Vol 78 (2) ◽  
pp. 401-414 ◽  
Author(s):  
J S Hyams ◽  
G G Borisy

Spindle pole bodies (SPBs) were isolated from the yeast Saccharomyces cerevisiae by an adaptation of the Kleinschmidt monolayer technique. Spheroplasts prepared from the cells were lysed on an air-water interface. Spread preparations were picked up on grids, transferred to experimental test solutions, and prepared for whole-mount electron microscopy. Using purified exogenous tubulin from porcine brain tissue, the isolated SPBs were shown to nucleate the assembly of microtubules in vitro. Microtubule growth was directional and primarily onto the intranuclear face of the SPB. Neither the morphology nor the microtubule-initiating capacity of the SPB was affected by treatment with the enzymes DNase, RNase, or phospholipase although both properties were sensitive to trypsin. Analysis of SPBs at various stages of the cell cycle showed that newly replicated SPBs had the capacity to nucleate microtubules. SPBs isolated from exponentially growing cells initiated a subset of the yeast spindle microtubules equivalent to the number of pole-to-pole microtubules seen in vivo. However, SPBs isolated from cells in stationary phase and therefore arrested in G1 nucleated a number of microtubules equal to the total chromosomal and pole-to-pole tubules in the yeast spindle. This may mean that in G1-arrested cells, the SPB is associated with microtubule attachment sites of the yeast chromatin.

1978 ◽  
Vol 30 (1) ◽  
pp. 331-352 ◽  
Author(s):  
B. Byers ◽  
K. Shriver ◽  
L. Goetsch

The spindle poles of the budding yeast, Saccharomyces cerevisiae, have been removed from mitotic and meiotic cells by osmotic lysis of spheroplasts. The spindle pole bodies (SPBs)—diskoidal structures also termed ‘spindle plaques’—have been analysed for their ability to potentiate the polymerization of microtubules in vitro. Free SPBs were completely deprived of any detectable native microtubules by incubation in the absence of added tubulin and were then challenged with chick neurotubulin, which had been rendered partially defective in self-initiation of repolymerization. Electron microscopy revealed that these SPBs served as foci for the initiation of microtubule polymerization in vitro. Because the attached microtubules elongated linearly with time but did not increase in numbers after the first stage of the reaction, it is apparent that there are a limited number of sites for initiation. The initiating potential of the SPBs was found to be inhibited by enzymic hydrolysis of protein but not of DNA. The microtubule end proximal to the site of initiation on the SPB is distinguished by a ‘closed’ appearance because of a terminal component which is continuous with the microtubule wall, whereas the distal end has the ‘open’ appearance characteristic of freely repolymerized neurotubules. SPBs which were partially purified on sucrose gradients retained their ability to initiate the assembly of microtubules with the same structural differentiation of their ends. The occurrence of closed proximal ends on native yeast microtubules suggests that closed ends may play a role in the initiation of microtubule polymerization in vivo, as well as in vitro.


2017 ◽  
Vol 28 (14) ◽  
pp. 1853-1861 ◽  
Author(s):  
Kimberly K. Fong ◽  
Krishna K. Sarangapani ◽  
Erik C. Yusko ◽  
Michael Riffle ◽  
Aida Llauró ◽  
...  

Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


1995 ◽  
Vol 15 (11) ◽  
pp. 5983-5990 ◽  
Author(s):  
Z Guo ◽  
F Sherman

It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1995 ◽  
Vol 15 (4) ◽  
pp. 1999-2009 ◽  
Author(s):  
J N Hirschhorn ◽  
A L Bortvin ◽  
S L Ricupero-Hovasse ◽  
F Winston

Nucleosomes have been shown to repress transcription both in vitro and in vivo. However, the mechanisms by which this repression is overcome are only beginning to be understood. Recent evidence suggests that in the yeast Saccharomyces cerevisiae, many transcriptional activators require the SNF/SWI complex to overcome chromatin-mediated repression. We have identified a new class of mutations in the histone H2A-encoding gene HTA1 that causes transcriptional defects at the SNF/SWI-dependent gene SUC2. Some of the mutations are semidominant, and most of the predicted amino acid changes are in or near the N- and C-terminal regions of histone H2A. A deletion that removes the N-terminal tail of histone H2A also caused a decrease in SUC2 transcription. Strains carrying these histone mutations also exhibited defects in activation by LexA-GAL4, a SNF/SWI-dependent activator. However, these H2A mutants are phenotypically distinct from snf/swi mutants. First, not all SNF/SWI-dependent genes showed transcriptional defects in these histone mutants. Second, a suppressor of snf/swi mutations, spt6, did not suppress these histone mutations. Finally, unlike in snf/swi mutants, chromatin structure at the SUC2 promoter in these H2A mutants was in an active conformation. Thus, these H2A mutations seem to interfere with a transcription activation function downstream or independent of the SNF/SWI activity. Therefore, they may identify an additional step that is required to overcome repression by chromatin.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 647-659
Author(s):  
Kochung Tsui ◽  
Lee Simon ◽  
David Norris

The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50Δ, or rad9Δ mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jae ook Kim ◽  
Alex Zelter ◽  
Neil T Umbreit ◽  
Athena Bollozos ◽  
Michael Riffle ◽  
...  

Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital.


Sign in / Sign up

Export Citation Format

Share Document