scholarly journals An ultrastructural study of cross-fertilization (Arbacia female x Mytilus male).

1977 ◽  
Vol 73 (1) ◽  
pp. 14-26 ◽  
Author(s):  
F J Longo

Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.

Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 237-249 ◽  
Author(s):  
C. Sardet ◽  
J. Speksnijder ◽  
S. Inoue ◽  
L. Jaffe

Using light microscopy techniques, we have studied the movements that follow fertilization in the denuded egg of the ascidian Phallusia mammillata. In particular, our observations show that, as a result of a series of movements described below, the mitochondria-rich subcortical myoplasm is split in two parts during the second phase of ooplasmic segregation. This offers a potential explanation for the origin of larval muscle cells from both posterior and anterior blastomeres. The first visible event at fertilization is a bulging at the animal pole of the egg, which is immediately followed by a wave of contraction, travelling towards the vegetal pole with a surface velocity of 1.4 microns s-1. This wave accompanies the first phase of ooplasmic segregation of the mitochondria-rich subcortical myoplasm. After this contraction wave has reached the vegetal pole after about 2 min, a transient cytoplasmic lobe remains there until 6 min after fertilization. Several new features of the morphogenetic movements were then observed: between the extrusion of the first and second polar body (at 5 and 24–29 min, respectively), a series of transient animal protrusions form at regular intervals. Each animal protrusion involves a flow of the centrally located cytoplasm in the animal direction. Shortly before the second polar body is extruded, a second transient vegetal lobe (‘the vegetal button’) forms, which, like the first, resembles a protostome polar lobe. Immediately after the second polar body is extruded, three events occur almost simultaneously: first, the sperm aster moves from the vegetal hemisphere to the equator. Second, the bulk of the vegetally located myoplasm moves with the sperm aster towards the future posterior pole, but interestingly about 20% remains behind at the anterior side of the embryo. This second phase of myoplasmic movement shows two distinct subphases: a first, oscillatory subphase with an average velocity of about 6 microns min-1, and a second steady subphase with a velocity of about 26 microns min-1. The myoplasm reaches its final position as the male pronucleus with its surrounding aster moves towards the centre of the egg. Third, the female pronucleus moves towards the centre of the egg to meet with the male pronucleus. Like the myoplasm, the migrations of both the sperm aster and the female pronucleus shows two subphases with distinctly different velocities. Finally, the pronuclear membranes dissolve, a small mitotic spindle is formed with very large asters, and at about 60–65 min after fertilization, the egg cleaves.


1999 ◽  
Vol 112 (8) ◽  
pp. 1139-1148 ◽  
Author(s):  
E.H. Hinchcliffe ◽  
E.A. Thompson ◽  
F.J. Miller ◽  
J. Yang ◽  
G. Sluder

In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.


1995 ◽  
Vol 129 (6) ◽  
pp. 1447-1458 ◽  
Author(s):  
G Sluder ◽  
E A Thompson ◽  
C L Rieder ◽  
F J Miller

Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, we were surprised to find that when pronuclear fusion in sea urchin zygotes is blocked with Colcemid, the female pronucleus consistently breaks down before the male pronucleus. This is not due to regional differences in the time of MPF activation, because pronuclei touching each other break down asynchronously to the same extent. To test whether NEB is controlled at the nuclear or cytoplasmic level, we activated the checkpoint for the completion of DNA synthesis separately in female and male pronuclei by treating either eggs or sperm before fertilization with psoralen to covalently cross-link base-paired strands of DNA. When only the maternal DNA is cross-linked, the male pronucleus breaks down first. When the sperm DNA is cross-linked, male pronuclear breakdown is substantially delayed relative to female pronuclear breakdown and sometimes does not occur. Inactivation of the Colcemid after female NEB in such zygotes with touching pronuclei yields a functional spindle composed of maternal chromosomes and paternal centrosomes. The intact male pronucleus remains located at one aster throughout mitosis. In other experiments, when psoralen-treated sperm nuclei, over 90% of the zygote nuclei do not break down for at least 2 h after the controls even though H1 histone kinase activity gradually rises close to, or higher than, control mitotic levels. The same is true for normal zygotes treated with aphidicolin to block DNA synthesis. From these results, we conclude that NEB in sea urchin zygotes is controlled at the nuclear, not cytoplasmic, level, and that mitotic levels of cytoplasmic MPF activity are not sufficient to drive NEB for a nucleus that is under checkpoint control. Our results also demonstrate that the checkpoint for the completion of DNA synthesis inhibits NEB by acting primarily within the nucleus, not by downregulating the activity of cytoplasmic MPF.


1970 ◽  
Vol 46 (2) ◽  
pp. 308-325 ◽  
Author(s):  
Frank J. Longo ◽  
Everett Anderson

The number of sperm incorporated into eggs made polyspermic with varying concentrations of nicotine (0.025–0.25%, v/v) appears to be directly related to the concentrations employed. The cortical response is morphologically equivalent to that observed in control preparations. Shortly after their incorporation all of the spermatozoa undergo structural events normally associated with the development of the male pronucleus in monospermic eggs. During the reorganization of the spermatozoa, sperm asters are formed. The number of male pronuclei that initially migrate to and encounter the female pronucleus is usually one to three. When pronuclei come into proximity to one another the surface of the female pronucleus proximal to the advancing male pronuclei flattens and becomes highly convoluted. Subsequently, the pronuclei contact each other and the outer and inner membranes of the pronuclear envelopes fuse, thereby producing the zygote nucleus. The male pronuclei remaining in the zygote after this initial series of pronuclear fusions continue to differentiate, i.e. they enlarge, form nucleolus-like bodies, and undergo further chromatin dispersion. In approximately 90% of the zygotes, all of the remaining male pronuclei progressively migrate to the zygote nucleus and fuse to form one large nucleus by 80 min postinsemination. Mitosis and cleavage of the polyspermic zygote occurs later than in monospermic eggs.


1970 ◽  
Vol 47 (3) ◽  
pp. 646-665 ◽  
Author(s):  
Frank J. Longo ◽  
Everett Anderson

Eggs of the sea urchin, Arbacia punctulata, treated with 3% urethane for 30 sec followed by 0.3% urethane and inseminated are polyspermic and fail to undergo a typical cortical reaction. Upon insemination the vitelline layer of urethane-treated eggs either does not separate or is raised only a short distance from the oolemma. 1–6 min after insemination, almost all of the cortical granules remain intact and are dislodged from the plasmalemma. Later (6 min to the two-cell stage) some cortical granules are released randomly along the surface of the zygote. Not all zygotes show the same degree of cortical granule dehiscence; most of them experience little if any granule release whereas others demonstrate considerably more. The thickness of the hyaline layer appears to be directly related to the number of cortical granules released. Subsequent to pronuclear migration, several male pronuclei become associated with the female pronucleus. Later the male and female pronuclear envelopes contact and the outer and the inner laminae fuse, thereby forming the zygote nucleus. The male pronuclei remaining in the cytoplasm increase in size and progressively migrate to, and fuse with, the zygote nucleus. By 60 min some zygotes appear to contain only one large zygote nucleus which subsequently enters mitosis. Other zygotes possess a number of male pronuclei which remain unfused, and later these pronuclei along with the zygote nucleus undergo mitosis. There does not appear to be a direct relation between the number of cortical granules a zygote possesses and the above mentioned dichotomy.


2000 ◽  
Vol 113 (18) ◽  
pp. 3341-3350 ◽  
Author(s):  
M.G. Riparbelli ◽  
G. Callaini ◽  
D.M. Glover

The meiotic spindle of Drosophila oocytes is acentriolar but develops an unusual central microtubule organising centre (MTOC) at the end of meiosis I. In polo oocytes, this common central pole for the two tandem spindles of meiosis II was poorly organised and in contrast to wild-type failed to maintain its associated Pav-KLP motor protein. Furthermore, the polar body nuclei failed to arrest at metaphase, and the four products of female meiosis all underwent repeated haploid division cycles on anastral spindles. This was linked to a failure to form the astral array of microtubules with which the polar body chromosomes are normally associated. The MTOC associated with the male pronucleus was also defective in polo eggs, and the sperm aster did not grow. Migration of the female pronucleus did not take place and so a gonomeric spindle could not form. We discuss these findings in relation to the known roles of polo like kinases in regulating the behaviour of MTOCs.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2365-2376 ◽  
Author(s):  
B.C. Williams ◽  
A.F. Dernburg ◽  
J. Puro ◽  
S. Nokkala ◽  
M.L. Goldberg

Drosophila melanogaster females homozygous for mutations in the gene encoding the kinesin-like protein KLP3A are sterile (Williams et al., 1995). We have investigated the basis of this sterility. The eggs produced by KLP3A mutant mothers are fertilized by sperm, and female meiosis appears to occur normally. However, the large majority of these embryos arrest their development soon thereafter with a characteristic phenotype. The four nuclei produced by female meiosis associate together in a polar body-like structure, while a bipolar spindle is established around the metaphase-arrested male pronucleus. Thus, the major defect caused by depletion of the KLP3A protein is either in specification of the female pronucleus, or in migration of the male and female pronuclei toward each other. We have also found that the KLP3A protein is located throughout the metaphase spindle during meiosis and the early embryonic mitotic divisions, but later accumulates specifically at the midzone of these same spindles during telophase. The protein is also present on two other microtubule structures: the sperm aster; and the radial, monastral array of microtubules established between the two meiosis II spindles. We discuss these results in light of possible functions of the KLP3A protein in pronuclear specification and migration.


1968 ◽  
Vol 39 (2) ◽  
pp. 339-368 ◽  
Author(s):  
Frank J. Longo ◽  
Everett Anderson

Fertilization events following coalescence of the gamete plasma membranes and culminating in the formation of the zygote nucleus were investigated by light and electron microscopy in the sea urchin, Arbacia punctulata. Shortly after the spermatozoon passes through the fertilization cone, it rotates approximately 180° and comes to rest lateral to its point of entrance. Concomitantly, the nonperforated nuclear envelope of the sperm nucleus undergoes degeneration followed by dispersal of the sperm chromatin and development of the pronuclear envelope. During this reorganization of the sperm nucleus, the sperm aster is formed. The latter is composed of ooplasmic lamellar structures and fasciles of microtubules. The male pronucleus, sperm mitochondrion, and flagellum accompany the sperm aster during its migration. As the pronuclei encounter one another, the surface of the female pronucleus proximal to the advancing male pronucleus becomes highly convoluted. Subsequently, the formation of the zygote nucleus commences with the fusion of the outer and the inner membranes of the pronuclear envelopes, thereby producing a small internuclear bridge and one continuous, perforated zygote nuclear envelope.


Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


2004 ◽  
Vol 121 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Fernando Covián-Nares ◽  
Guadalupe Martı́nez-Cadena ◽  
Juana López-Godı́nez ◽  
Ekaterina Voronina ◽  
Gary M Wessel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document