scholarly journals Failure of pronuclear migration and repeated divisions of polar body nuclei associated with MTOC defects in polo eggs of Drosophila

2000 ◽  
Vol 113 (18) ◽  
pp. 3341-3350 ◽  
Author(s):  
M.G. Riparbelli ◽  
G. Callaini ◽  
D.M. Glover

The meiotic spindle of Drosophila oocytes is acentriolar but develops an unusual central microtubule organising centre (MTOC) at the end of meiosis I. In polo oocytes, this common central pole for the two tandem spindles of meiosis II was poorly organised and in contrast to wild-type failed to maintain its associated Pav-KLP motor protein. Furthermore, the polar body nuclei failed to arrest at metaphase, and the four products of female meiosis all underwent repeated haploid division cycles on anastral spindles. This was linked to a failure to form the astral array of microtubules with which the polar body chromosomes are normally associated. The MTOC associated with the male pronucleus was also defective in polo eggs, and the sperm aster did not grow. Migration of the female pronucleus did not take place and so a gonomeric spindle could not form. We discuss these findings in relation to the known roles of polo like kinases in regulating the behaviour of MTOCs.

Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2365-2376 ◽  
Author(s):  
B.C. Williams ◽  
A.F. Dernburg ◽  
J. Puro ◽  
S. Nokkala ◽  
M.L. Goldberg

Drosophila melanogaster females homozygous for mutations in the gene encoding the kinesin-like protein KLP3A are sterile (Williams et al., 1995). We have investigated the basis of this sterility. The eggs produced by KLP3A mutant mothers are fertilized by sperm, and female meiosis appears to occur normally. However, the large majority of these embryos arrest their development soon thereafter with a characteristic phenotype. The four nuclei produced by female meiosis associate together in a polar body-like structure, while a bipolar spindle is established around the metaphase-arrested male pronucleus. Thus, the major defect caused by depletion of the KLP3A protein is either in specification of the female pronucleus, or in migration of the male and female pronuclei toward each other. We have also found that the KLP3A protein is located throughout the metaphase spindle during meiosis and the early embryonic mitotic divisions, but later accumulates specifically at the midzone of these same spindles during telophase. The protein is also present on two other microtubule structures: the sperm aster; and the radial, monastral array of microtubules established between the two meiosis II spindles. We discuss these results in light of possible functions of the KLP3A protein in pronuclear specification and migration.


Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 237-249 ◽  
Author(s):  
C. Sardet ◽  
J. Speksnijder ◽  
S. Inoue ◽  
L. Jaffe

Using light microscopy techniques, we have studied the movements that follow fertilization in the denuded egg of the ascidian Phallusia mammillata. In particular, our observations show that, as a result of a series of movements described below, the mitochondria-rich subcortical myoplasm is split in two parts during the second phase of ooplasmic segregation. This offers a potential explanation for the origin of larval muscle cells from both posterior and anterior blastomeres. The first visible event at fertilization is a bulging at the animal pole of the egg, which is immediately followed by a wave of contraction, travelling towards the vegetal pole with a surface velocity of 1.4 microns s-1. This wave accompanies the first phase of ooplasmic segregation of the mitochondria-rich subcortical myoplasm. After this contraction wave has reached the vegetal pole after about 2 min, a transient cytoplasmic lobe remains there until 6 min after fertilization. Several new features of the morphogenetic movements were then observed: between the extrusion of the first and second polar body (at 5 and 24–29 min, respectively), a series of transient animal protrusions form at regular intervals. Each animal protrusion involves a flow of the centrally located cytoplasm in the animal direction. Shortly before the second polar body is extruded, a second transient vegetal lobe (‘the vegetal button’) forms, which, like the first, resembles a protostome polar lobe. Immediately after the second polar body is extruded, three events occur almost simultaneously: first, the sperm aster moves from the vegetal hemisphere to the equator. Second, the bulk of the vegetally located myoplasm moves with the sperm aster towards the future posterior pole, but interestingly about 20% remains behind at the anterior side of the embryo. This second phase of myoplasmic movement shows two distinct subphases: a first, oscillatory subphase with an average velocity of about 6 microns min-1, and a second steady subphase with a velocity of about 26 microns min-1. The myoplasm reaches its final position as the male pronucleus with its surrounding aster moves towards the centre of the egg. Third, the female pronucleus moves towards the centre of the egg to meet with the male pronucleus. Like the myoplasm, the migrations of both the sperm aster and the female pronucleus shows two subphases with distinctly different velocities. Finally, the pronuclear membranes dissolve, a small mitotic spindle is formed with very large asters, and at about 60–65 min after fertilization, the egg cleaves.


1994 ◽  
Vol 126 (1) ◽  
pp. 199-209 ◽  
Author(s):  
S Clark-Maguire ◽  
P E Mains

Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild-type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule-organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis.


1977 ◽  
Vol 73 (1) ◽  
pp. 14-26 ◽  
Author(s):  
F J Longo

Insemination of sea urchin (Arbacia) ova with mussel (Mytilus) sperm has been accomplished by treating eggs with trypsin and suspending the gametes in seawater made alkaline with NaOH. Not all inseminated eggs undergo a cortical granule reaction. Some eggs either elevate what remains of their vitelline layer or demonstrate no cortical modification whatsoever. After its incorporation into the egg, the nucleus of Mytilus sperm undergoes changes which eventually give rise to the formation of a male pronucleus. Concomitant with these transformations, a sperm aster may develop in association with the centrioles brought into the egg with the spermatozoon. Both the male pronucleus and the sperm aster may then migrate centrad to the female pronucleus. Evidence is presented which suggests that fusion of the male pronuclei from Mytilus sperm with female pronuclei from Arbacia eggs may occur, although this was not directly observed. These results demonstrate that Mytilus sperm nuclei are able to react to conditions within Arbacia eggs and differentiate into male pronuclei.


1992 ◽  
Vol 101 (3) ◽  
pp. 547-559 ◽  
Author(s):  
M. Hatsumi ◽  
S.A. Endow

The Drosophila microtubule motor protein, nonclaret disjunctional (ncd), is required for proper chromosome distribution in meiosis and mitosis. We have examined the meiotic and mitotic divisions in wild-type Drosophila oocytes and early embryos, and the effects of three ncd mutants (cand, ncd and ncdD) on spindle structure and chromosome movement. The ncd mutants cause abnormalities in spindle structure early in meiosis I, and abnormal chromosome configurations throughout meiosis I and II. Defective divisions continue in early embryos of the motor null mutant, cand, with abnormal early mitotic spindles. The effects of mutants on spindle structure suggest that ncd is required for proper meiotic spindle assembly, and may play a role in forming or maintaining spindle poles in meiosis. The disruption of normal meiotic and mitotic chromosome distribution by ncd mutants can be attributed to its role as a spindle motor, although a role for ncd as a chromosome-associated motor protein is not excluded. The ncd motor protein functions not only in meiosis, but also performs an active role in the early mitotic divisions of the embryo.


2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J.P. Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

ABSTRACTProtein Phosphatase 2A (PP2A) is an heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits with various key roles during cell division. While A and C subunits form the core enzyme, the diversity generated by interchangeable B subunits dictates substrate specificity. Within the B subunits, B56-type subunits play important roles during meiosis in yeast and mice by protecting centromeric cohesion and stabilising the kinetochore-microtubule attachments. These functions are achieved through targeting of B56 subunits to centromere and kinetochore by Shugoshin and BUBR1. In the nematode Caenorhabditis elegans (C. elegans) the closest BUBR1 ortholog lacks the B56 interaction domain and the Shugoshin orthologue is not required for normal segregation during oocyte meiosis. Therefore, the role of PP2A in C. elegans female meiosis is not known. Here, we report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. Specifically, B56 subunits PPTR-1 and PPTR-2 associate with chromosomes during prometaphase I and regulate chromosome congression. The chromosome localization of B56 subunits does not require shugoshin orthologue SGO-1. Instead we have identified the kinase BUB-1 as the key B56 targeting factor to the chromosomes during meiosis. PP2A BUB-1 recruits PP2A:B56 to the chromosomes via dual mechanism: 1) PPTR-1/2 interacts with the newly identified LxxIxE short linear motif (SLiM) within a disordered region in BUB-1 in a phosphorylation-dependent manner; and 2) PPTR-2 can also be recruited to chromosomes in a BUB-1 kinase domain-dependent manner. Our results highlight a novel, BUB-1-dependent mechanism for B56 recruitment, essential for recruiting a pool of PP2A required for proper chromosome congression during meiosis I.


2013 ◽  
Vol 200 (5) ◽  
pp. 567-576 ◽  
Author(s):  
Kexi Yi ◽  
Boris Rubinstein ◽  
Jay R. Unruh ◽  
Fengli Guo ◽  
Brian D. Slaughter ◽  
...  

Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes.


2002 ◽  
Vol 115 (5) ◽  
pp. 913-922 ◽  
Author(s):  
Maria Giovanna Riparbelli ◽  
Giuliano Callaini ◽  
David M. Glover ◽  
Maria do Carmo Avides

Drosophila abnormal spindle (asp) mutants exhibit a mitotic metaphase checkpoint arrest with abnormal spindle poles, which reflects a requirement for Asp for the integrity of microtubule organising centres (MTOCs). In male meiosis, the absence of a strong spindle integrity checkpoint enables asp mutant cells to proceed through anaphase and telophase. However, the central spindle region is not correctly organised and cells frequently fail to complete cytokinesis. This contrasts with meiosis in wild-type males where at late anaphase a dense array of microtubules forms in the central spindle region that has Asp localised at its border. We speculate that Asp is associated with the minus ends of microtubules that have been released from the spindle poles to form the central spindle. A parallel situation arises in female meiosis where Asp not only associates with the minus ends of microtubules at the acentriolar poles but also with the central spindle pole body that forms between the two tandem spindles of meiosis II. Upon fertilisation, Asp is also recruited to the MTOC that nucleates the sperm aster. Asp is required for growth of the microtubules of the sperm aster,which in asp mutants remains diminutive and so prevents migration of the pronuclei.


2005 ◽  
Vol 169 (3) ◽  
pp. 447-457 ◽  
Author(s):  
Hsin-ya Yang ◽  
Paul E. Mains ◽  
Francis J. McNally

In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex.


1997 ◽  
Vol 139 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Carol A. Bascom-Slack ◽  
Dean S. Dawson

The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.


Sign in / Sign up

Export Citation Format

Share Document