scholarly journals Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movements

1979 ◽  
Vol 83 (3) ◽  
pp. 623-632 ◽  
Author(s):  
M Schliwa ◽  
U Euteneuer ◽  
W Herzog ◽  
K Weber

Melanophores of the angelfish, pterophyllum scalare, have previously been shown to display approximately 2,400 microtubules in cells wih pigment dispersed; these microtubules radiate from a presumptive organizing center, the central apparatus (CA), and their number is reduced to approximately 1,000 in the state with aggregated pigment (M. Schliwa and U. Euteneuer, 1978, J. Supramol. Struct. 8:177-190). In an attempt to elucidate the factors controlling this rapid reorganization of the microtubule apparatus, structure and function of the CA have been investigated under different physiological conditions. As a function of the state of pigment distribution, melanophores differ markedly with respect to CA organization. A complex of dense amorphous aggregates and associated fuzzy material, several micrometers in diameter, surrounds the centrioles in cells with pigment dispersed, and numerous microtubules emanate from this complex in a radial fashion. In the aggregated state, on the other hand, few microtubules are observed in the pericentiolar region, and the amount of fibrous material is greatly reduced. These changes in CA morphology as a function of the state of pigment distribution are associated with a marked difference in its capacity to initiatiate the assembly of microtubules from exogenous pure porcine brain tubulin in lysed cell preparations. After complete removal of preexisting microtubules, cells lysed in the dispersed state into a solution of 1-2 mg/ml pure tubulin have numerous microtubules associated with the CA in radial fashion, while cells lysed in the aggregated state nucleate the assembly of only a few microtubules. We conclude that it is the activity of the CA that basically regulates the expression of microtubules. This regulation is achieved through a variation in the capacity to initiate microtubule assembly. Increase or decrease in the amount of dense material, as readily observed in the cell system studied here, seems to be a morphologic expression of such a physiologic function.

2000 ◽  
Vol 6 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Patricia G. Calarco

AbstractMammalian oocytes present challenges for optimal study by electron microscopy (EM) due to their high level of hydration, their large size, and their relatively undifferentiated cytoplasm. This is particularly true for immunoprobe localization which has led to a dependence on light microscopic (LM) techniques, such as immunofluorescence. This study presents correlative LM and EM data to describe an example of the failure of light microscopy to correctly predict the ultrastructure of one particular organelle. Immunoprobe localization of centrosome and microtubule organizing center (MTOC) antigens in the mammalian egg was made by immunofluorescence and post-embedding immuno-EM, with best EM results achieved in Lowicryl-embedded material. Centrosome and MTOC antigens were detected by 5051 and an antibody to gamma tubulin (γtubulin). Gamma tubulin is a highly conserved element of MTOCs in many species and, thus, is highly diagnostic for them; it is also considered essential for microtubule (MT) nucleation. Results indicate that prior to nuclear breakdown, 5051 antigens and γ-tubulin are found exclusively in a type of “organelle,” the multivesicular aggregate (MVA), that bears no resemblance to MTOCs at the ultrastructural level. Until recently, the MVA was considered an organelle without a known function, while standard MTOCs were presumed to be the entities that carry the proteins recognized by centrosome antibodies. LM localization of centrosomal antigens carried the presumption that standard MTOCs were the entities labeled. Whether or not other molecules are shown to co-localize to these MVA, the presence of γ-tubulin supports the contention that MVA, or their contents, serve as centrosomal precursors with a unique ultrastructure. Thus, dependence on LM techniques alone can lead to erroneous conclusions on organelle identity and function.


1983 ◽  
Vol 31 (4) ◽  
pp. 445-461 ◽  
Author(s):  
M C Willingham ◽  
J Wehland ◽  
C B Klee ◽  
N D Richert ◽  
A V Rutherford ◽  
...  

Using an antibody prepared against performic acid-treated calmodulin, we have localized calmodulin in cultured fibroblastic cells by immunofluorescence and immunoelectron microscopy. In interphase cells, calmodulin was found to be diffusely distributed throughout the cytosol. An increased amount of calmodulin was found in the pericentriolar region of interphase cells. No significant aggregation of calmodulin was found in association with microfilaments, peripheral cytoplasmic microtubules or clathrin-coated structures. Calmodulin was present in moderate amounts in microvilli, ruffles, and zeiotic blebs of the cell surface. In motitic cells, calmodulin was found concentrated in the pericentriolar region, and appeared to concentrate along radiating spindle microtubules proximal to the centrioles. Redistribution of calmodulin was seen between early and late telophase, in which the pericentriolar pattern of calmodulin in early telophase shifted to an aggregation on the intercellular bridge, with a large part of the midbody portion of the bridge being devoid of calmodulin. These results show that calmodulin is distributed throughout the cytosol, but is markedly concentrated in the region of the microtubule organizing center in interphase cells, as well as in elements of the mitotic spindle apparatus. This distribution suggests that calmodulin has a regulatory role in the organization and function of microtubules during interphase, as well as during mitosis.


2008 ◽  
Vol 19 (2) ◽  
pp. 745-753 ◽  
Author(s):  
Andrew Kodani ◽  
Christine Sütterlin

The Golgi apparatus (GA) of mammalian cells is positioned in the vicinity of the centrosome, the major microtubule organizing center of the cell. The significance of this physical proximity for organelle function and cell cycle progression is only beginning to being understood. We have identified a novel function for the GA protein, GM130, in the regulation of centrosome morphology, position and function during interphase. RNA interference–mediated depletion of GM130 from five human cell lines revealed abnormal interphase centrosomes that were mispositioned and defective with respect to microtubule organization and cell migration. When GM130-depleted cells entered mitosis, they formed multipolar spindles, arrested in metaphase, and died. We also detected aberrant centrosomes during interphase and multipolar spindles during mitosis in ldlG cells, which do not contain detectable GM130. Although GA proteins have been described to regulate mitotic centrosomes and spindle formation, this is the first report of a role for a GA protein in the regulation of centrosomes during interphase.


1984 ◽  
Vol 99 (1) ◽  
pp. 70s-75s ◽  
Author(s):  
M Miller ◽  
F Solomon

The microtubules of the mature erythrocyte of the chicken are confined to a band at the periphery. Whole-mount electron microscopy after extraction reveals that the number of microtubules in each cell is almost the same. All the microtubules can be depolymerized by incubation in the cold, and the marginal band can be quantitatively and qualitatively reformed by return to 39 degrees C. These properties allow the reformation of the marginal band to be treated as an in vivo microtubule assembly reaction. The kinetics of this reaction and the intermediates detected during reformation suggest a mechanism of microtubule organization that is distinct from that observed in other cell types. Apparently only one or two growing microtubule ends are available for assembly--assembly is only detected at the cell periphery, even at early times--and there is no evidence of the participation of a microtubule-organizing center.


2000 ◽  
Vol 6 (3) ◽  
pp. 195-201
Author(s):  
Patricia G. Calarco

Abstract Mammalian oocytes present challenges for optimal study by electron microscopy (EM) due to their high level of hydration, their large size, and their relatively undifferentiated cytoplasm. This is particularly true for immunoprobe localization which has led to a dependence on light microscopic (LM) techniques, such as immunofluorescence. This study presents correlative LM and EM data to describe an example of the failure of light microscopy to correctly predict the ultrastructure of one particular organelle. Immunoprobe localization of centrosome and microtubule organizing center (MTOC) antigens in the mammalian egg was made by immunofluorescence and post-embedding immuno-EM, with best EM results achieved in Lowicryl-embedded material. Centrosome and MTOC antigens were detected by 5051 and an antibody to gamma tubulin (γtubulin). Gamma tubulin is a highly conserved element of MTOCs in many species and, thus, is highly diagnostic for them; it is also considered essential for microtubule (MT) nucleation. Results indicate that prior to nuclear breakdown, 5051 antigens and γ-tubulin are found exclusively in a type of “organelle,” the multivesicular aggregate (MVA), that bears no resemblance to MTOCs at the ultrastructural level. Until recently, the MVA was considered an organelle without a known function, while standard MTOCs were presumed to be the entities that carry the proteins recognized by centrosome antibodies. LM localization of centrosomal antigens carried the presumption that standard MTOCs were the entities labeled. Whether or not other molecules are shown to co-localize to these MVA, the presence of γ-tubulin supports the contention that MVA, or their contents, serve as centrosomal precursors with a unique ultrastructure. Thus, dependence on LM techniques alone can lead to erroneous conclusions on organelle identity and function.


1991 ◽  
Vol 115 (3) ◽  
pp. 635-653 ◽  
Author(s):  
J Tooze ◽  
M Hollinshead

Using horseradish peroxidase (HRP) as a fluid-phase endocytic tracer, we observed through the electron microscope numerous tubular endosomes with a diameter of 30-50 nm and lengths of greater than 2 microns in thick sections (0.2-0.5 microns) of AtT20 cells. These tubular endosomes are multibranching and form local networks but not a single reticulum throughout the cytoplasm. They are sometimes in continuity with vesicular endosomal structures but have not been observed in continuity with AtT20 cell late endosomes. Tubular endosomal networks are not uniformly distributed throughout the cytoplasm, but are particularly abundant in growth cones, in patches below the plasma membrane of the cell body, and surrounding the centrioles and microtubule organizing center (MTOC). Tubular endosomes at all these locations receive HRP within the first 5 min of endocytosis but approximately 30 min of endocytosis are required to load the tubular endosomal networks with HRP so that their full extent can be visualized in the electron microscope. After 10 min of endocytosis, complete unloading occurs within 30 min of chase, but between 30 and 60 min are required to chase out all the tracer from the tubular endosomes loaded to steady state during 60 min endocytosis of 10 mg/ml HRP. In interphase cells, neither the loading nor unloading of tubular endosomes depends on microtubules but in cells blocked in mitosis by depolymerization of the mitotic spindle with nocodazole, HRP does not chase out of tubular endosomes. The thread-like shape of tubular endosomes is not dependent on microtubules. Furthermore, HRP is delivered to AtT20 tubular endosomes at 20 degrees C. All these properties indicate that AtT20 cell tubular endosomes are an early endocytic compartment distinct from late endosomes. Tubular endosomes like those in AtT20 cells have been seen in cells of the following lines: PC12, HeLa, Hep2, Vero, MDCK I and II, CCL64, RK13, and NRK; they are particularly abundant in the first three lines. In contrast, tubular endosomes are sparse in 3T3 and BHK21 cells. The tubular endosomes we have observed appear to be identical to the endosomal reticulum observed in the living Hep2 cells by Hopkins, C. R., A. Gibson, H. Shipman, and K. Miller. 1990.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 701 ◽  
Author(s):  
Joukov ◽  
De Nicolo

Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.


1984 ◽  
Vol 99 (3) ◽  
pp. 1092-1100 ◽  
Author(s):  
A A Rogalski ◽  
S J Singer

The intracellular spatial relationships between elements of the Golgi apparatus (GA) and microtubules in interphase cells have been explored by double immunofluorescence microscopy. By using cultured cells infected with the temperature-sensitive Orsay-45 mutant of vesicular stomatitis virus and a temperature shift-down protocol, we visualized functional elements of the GA by immunolabeling of the G protein of the virus that was arrested in the GA during its intracellular passage to the plasma membrane 13 min after the temperature shift-down. Complete disassembly of the cytoplasmic microtubules by nocodazole at the nonpermissive temperature before the temperature shift led to the dispersal of the GA elements, from their normal compact perinuclear configuration close to the microtubule-organizing center (MTOC) into the cell periphery. Washout of the nocodazole that led to the reassembly of the microtubules from the MTOC also led to the recompaction of the GA elements to their normal configuration. During this recompaction process, GA elements were seen in close lateral apposition to microtubules. In cells treated with nocodazole followed by taxol, an MTOC developed, but most of the microtubules were free of the MTOC and were assembled into bundles in the cell periphery. Under these circumstances, the GA elements that had been dispersed into the cell periphery by the nocodazole treatment remained dispersed despite the presence of an MTOC. In cells treated directly with taxol, free microtubules were seen in the cytoplasm in widely different, bundled configurations from one cell to another, but, in each case, elements of the GA appeared to be associated with one of the two end regions of the microtubule bundles, and to be uncorrelated with the locations of the vimentin intermediate filaments in these cells. These results are interpreted to suggest two types of associations of elements of the GA with microtubules: one lateral, and the other (more stable) end-on. The end-on association is suggested to involve the minus-end regions of microtubules, and it is proposed that this accounts for the GA-MTOC association in normal cells.


2001 ◽  
Vol 79 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Corinne Lionne ◽  
Folma Buss ◽  
Tony Hodge ◽  
Gudrun Ihrke ◽  
John Kendrick-Jones

Myosin V plays an important role in membrane trafficking events. Its implication in the transport of pigment granules in melanocytes and synaptic vesicles in neurons is now well established. However, less is known about its function(s) in other cell types. Finding a common function is complicated by the diversity of myosin V expression in different tissues and organisms and by its association with different subcellular compartments. Here we show that myosin V is present in a variety of cells. Within the same cell type under different physiological conditions, we observed two main cellular locations for myosin V that were dependent on the dynamics of the plasma membrane: in cells with highly dynamic membranes, myosin V was specifically concentrated at the leading edge in membrane ruffles, whereas in cells with less dynamic membranes, myosin V was enriched around the microtubule-organizing center. The presence of myosin V in the leading ruffling edge of the cell was induced by growth factor stimulation and was dependent on the presence of a functional motor domain. Moreover, myosin V localization at the microtubule-organizing center was dependent on the integrity of the microtubules. In polarized epithelial cells (WIF-B), where the microtubule-organizing region is close to the actin-rich apical surface, one single pool of myosin V, sensitive to the integrity of both microtubules and actin filaments, was observed.Key words: cell motility, cytoskeleton dynamics, molecular motors, mouse brain unconventional myosin Va, ruffles.


2002 ◽  
Vol 22 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Katharine C. Abruzzi ◽  
Adelle Smith ◽  
William Chen ◽  
Frank Solomon

ABSTRACT Free β-tubulin not in heterodimers with α-tubulin can be toxic, disrupting microtubule assembly and function. We are interested in the mechanisms by which cells protect themselves from free β-tubulin. This study focused specifically on the function of Rbl2p, which, like α-tubulin, can rescue cells from free β-tubulin. In vitro studies of the mammalian homolog of Rbl2p, cofactor A, have suggested that Rbl2p/cofactor A may be involved in tubulin folding. Here we show that Rbl2p becomes essential in cells containing a modest excess of β-tubulin relative to α-tubulin. However, this essential activity of Rbl2p/cofactorA does not depend upon the reactions described by the in vitro assay. Rescue of β-tubulin toxicity requires a minimal but substoichiometric ratio of Rbl2p to β-tubulin. The data suggest that Rbl2p binds transiently to free β-tubulin, which then passes into an aggregated form that is not toxic.


Sign in / Sign up

Export Citation Format

Share Document