scholarly journals Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors.

1980 ◽  
Vol 85 (2) ◽  
pp. 414-428 ◽  
Author(s):  
S D MacLean-Fletcher ◽  
T D Pollard

We have studied the kinetics of the gelation process that occurs upon warming cold extracts of Acanthamoeba using a low-shear falling ball assay. We find that the reaction has at least two steps, requires 0.5 mM ATP and 1.5 mM MgCl2, and is inhibited by micromolar Ca++. The optimum pH is 7.0 and temperature, 25 degrees-30 degrees C. The rate of the reaction is increased by cold preincubation with both MgCl2 and ATP. Nonhydrolyzable analogues of ATP will not substitute for ATP either in this "potentiation reaction" or in the gelation process. Either of two purified or any one of four partially purified Acanthamoeba proteins will cross-link purified actin to form a gel, but none can account for the dependence of the reaction in the crude extract on Mg-ATP or its regulation by Ca++. This suggests that the extract contains, in addition to actin-cross-linking proteins, factors dependent on Mg-ATP and Ca++ that regulate the gelation process.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Magdalena Maciejewska ◽  
Marian Zaborski

The aim of this work was to study the activity of several ionic liquids (alkylimidazolium salts) that are used to improve the dispersion of coagent particles in peroxide-cross-linked hydrogenated acrylonitrile butadiene elastomer (HNBR). Hydrotalcite grafted with monoallyl maleate was applied as a coagent for the HNBR vulcanization. In this paper, we discuss the effect of the ionic liquids (alkylimidazolium salts) with respect to their anion (bromide, chloride, tetrafluoroborate, and hexafluorophosphate) and the length of alkyl chain in the cation (allyl-, ethyl-, butyl-, hexyl-, and octyl-) on the vulcanization kinetics of rubber compounds. The influence of ionic liquids on the cross-link density, the mechanical properties of the vulcanizates, and their resistance to weather ageing were also studied. Alkylimidazolium salts seem to improve the dispersion of the coagent particles and to be active in the cross-linking of HNBR with peroxide. The type of ionic liquid considerably influences the activity of the coagent particles toward the HNBR. The application of ionic liquids increases the cross-link density of the vulcanizates and improves their resistance to weather aging.


2020 ◽  
Vol 31 (16) ◽  
pp. 1744-1752
Author(s):  
Loïc Chaubet ◽  
Abdullah R. Chaudhary ◽  
Hossein K. Heris ◽  
Allen J. Ehrlicher ◽  
Adam G. Hendricks

Cells constantly adapt their mechanics in response to mechanical and biochemical cues to migrate, divide, and organize into tissues. We developed new methods to probe the viscoelasticity of the cytoplasm and found that the binding kinetics of proteins that cross-link actin filaments control the transition from an elastic to a fluid-like network.


1974 ◽  
Vol 249 (8) ◽  
pp. 2478-2482
Author(s):  
William D. Fordham ◽  
Charles Gilvarg

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2031
Author(s):  
Ruben Miranda ◽  
Isabel Latour ◽  
Angeles Blanco

Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling potential and the difficulty of cleaning the fouled membranes. Silica adsorption has many advantages compared to coagulation and precipitation at high pHs: pH adjustment is not necessary, the conductivity of treated waters is not increased, and there is no sludge generation. Therefore, this study investigates the feasibility of using pseudoboehmite and its calcination product (γ-Al2O3) for silica adsorption from a paper mill effluent. The effect of sorbent dosage, pH, and temperature, including both equilibrium and kinetics studies, were studied. γ-Al2O3 was clearly more efficient than pseudoboehmite, with optimal dosages around 2.5–5 g/L vs. 7.5–15 g/L. The optimum pH is around 8.5–10, which fits well with the initial pH of the effluent. The kinetics of silica adsorption is fast, especially at high dosages and temperatures: 80–90% of the removable silica is removed in 1 h. At these conditions, silica removal is around 75–85% (<50 mg/L SiO2 in the treated water).


2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


1990 ◽  
Vol 271 (2) ◽  
pp. 305-308 ◽  
Author(s):  
N Martinet ◽  
S Beninati ◽  
T P Nigra ◽  
J E Folk

N1N8-Bis(gamma-glutamyl)spermidine was found in exhaustive proteolytic digests of isolated cell envelopes from human epidermis at levels comparable with those of epsilon-(gamma-glutamyl)lysine. Significantly higher than normal amounts of these compounds, particularly the bis(gamma-glutamyl)polyamine, were observed in envelopes from afflicted areas (scales) of psoriatic patients. These findings support the notions that N1N8-bis(gamma-glutamyl)spermidine, like epsilon-(gamma-glutamyl)lysine, functions in cell envelopes as an enzyme-generated protein cross-link and stabilizing force and that individuals with the chronic, recurrent skin disease, psoriasis, exhibit in involved epidermis abnormal cell-envelope-protein cross-linking.


2021 ◽  
Author(s):  
Jacob Ishibashi ◽  
Ian Pierce ◽  
Alice Chang ◽  
Aristotelis Zografos ◽  
Bassil El-Zaatari ◽  
...  

<p>The composition of low-T<sub>g</sub> <i>n</i>-butylacrylate-<i>block</i>-(acetoxyaceto)ethyl acrylate block polymers is investigated as a strategy to tune the properties of dynamically cross-linked vinylogous urethane vitrimers. As the proportion of the cross-linkable block is increased, the thermorheological properties, structure, and stress relaxation evolve in ways that cannot be explained by increasing cross-link density alone. Evidence is presented that network connectivity defects such as loops and dangling ends are increased by microphase separation. The thermomechanical and viscoelastic properties of block copolymer-derived vitrimers arise from the subtle interplay of microphase separation and network defects.</p><div><br></div><p></p>


2019 ◽  
Vol 10 (16) ◽  
pp. 2047-2056 ◽  
Author(s):  
Mikihiro Hayashi ◽  
Ryoto Yano ◽  
Akinori Takasu
Keyword(s):  

Elastomeric vitrimer materials with tunable cross-link densities are prepared using cross-linking precursor polyesters with multiple COOH side groups in the presence of diepoxy cross-linkers and trans-esterification catalysts.


1971 ◽  
Vol 26 (7) ◽  
pp. 710-719 ◽  
Author(s):  
Kunhard Pollow ◽  
Barbara Pollow

The microsomal fraction of rat placenta contains a 17β-hydroxysteroid-oxidoreductase which transfers hydrogen from position 17 of estradiol to androstenedione. This hydrogen transfer is dependent on NAD, NADP as cofactor is without effect. The optimum pH is at 6,9. In the presence of NAD the Michaelis constant for estradiol is 4,17 · 10-5м at pH 7,4. In the presence of androstenedione in the incubation medium the Km-value for estradiol is decreased, which indicates an increased affinity for the enzyme. The temperature optimum of the enzyme is 38 °C. Addition of SH-blocking agents inhibited the enzyme activity. Zinc and magnesium ions had an inhibitory effect on the “transhydrogenase” and B-NADPT specifically labelled from [1-T]-glucose showed that the non-effect of NADP on transhydrogenation from estradiol to androstenedione resulting in reduction of position 17 is not due to different stereospecifity.The results show a close relation between the oxidative metabolism of estradiol and the reduction of androstenedione, indicating that estradiol-17β, as the preferred hydrogen-donating substrate, is an essential component of the androstenedione-hydrogenating system in the microsomal fraction of rat placenta.


Sign in / Sign up

Export Citation Format

Share Document