scholarly journals Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy.

1981 ◽  
Vol 88 (3) ◽  
pp. 526-535 ◽  
Author(s):  
L V Johnson ◽  
M L Walsh ◽  
B J Bockus ◽  
L B Chen

Permeant cationic fluorescent probes are shown to be selectively accumulated by the mitochondria of living cells. Mitochondria-specific interaction of such molecules is apparently dependent on the high trans-membrane potential (inside negative) maintained by functional mitochondria. Dissipation of the mitochondrial trans-membrane and potential by ionophores or inhibitors of electron transport eliminates the selective mitochondrial association of these compounds. The application of such potential-dependent probes in conjunction with fluorescence microscopy allows the monitoring of mitochondrial membrane potential in individual living cells. Marked elevations in mitochondria-associated probe fluorescence have been observed in cells engaged in active movement. This approach to the analysis of mitochondrial membrane potential should be of value in future investigations of the control of energy metabolism and energy requirements of specific biological functions at the cellular level.

2019 ◽  
Vol 20 (12) ◽  
pp. 3045 ◽  
Author(s):  
Querio ◽  
Antoniotti ◽  
Levi ◽  
Gallo

Trimethylamine N-oxide (TMAO) is an organic compound derived from dietary choline and L-carnitine. It behaves as an osmolyte, a protein stabilizer, and an electron acceptor, showing different biological functions in different animals. Recent works point out that, in humans, high circulating levels of TMAO are related to the progression of atherosclerosis and other cardiovascular diseases. However, studies on a direct role of TMAO in cardiomyocyte parameters are still limited. The purpose of this work is to study the effects of TMAO on isolated adult rat cardiomyocytes. TMAO in both 100 µM and 10 mM concentrations, from 1 to 24 h of treatment, does not affect cell viability, sarcomere length, intracellular ROS, and mitochondrial membrane potential. Furthermore, the simultaneous treatment with TMAO and known cardiac insults, such as H2O2 or doxorubicin, does not affect the treatment’s effect. In conclusion, TMAO cannot be considered a direct cause or an exacerbating risk factor of cardiac damage at the cellular level in acute conditions.


2002 ◽  
Vol 7 (4) ◽  
pp. 383-389 ◽  
Author(s):  
Shu-Gui Huang

The mitochondrion plays a pivotal role in energy metabolism in eukaryotic cells. The electrochemical potential across the mitochondrial inner membrane is regulated to cope with cellular energy needs and thus reflects the bioenergetic state of the cell. Traditional assays for mitochondrial membrane potential are not amenable to high-throughput drug screening. In this paper, I describe a high-throughput assay that measures the mitochondrial membrane potential of living cells in 96- or 384-well plates. Cells were first treated with test compounds and then with a fluorescent potentiometric probe, the cationic-lipophilic dye tetramethylrhodamine methyl ester (TMRM). The cells were then washed to remove free compounds and probe. The amount of TMRM retained in the mitochondria, which is proportional to the mitochondrial membrane potential, was measured on an LJL Analyst fluorescence reader. Under optimal conditions, the assay measured only the mitochondrial membrane potential. The chemical uncouplers carbonylcyanide m-chlorophenyl hydrazone and dinitrophenol decreased fluorescence intensity, with IC50 values (concentration at 50% inhibition) similar to those reported in the literature. A Z' factor of greater than 0.5 suggests that this cell-based assay can be adapted for high-throughput screening of chemical libraries. This assay may be used in screens for drugs to treat metabolic disorders such as obesity and diabetes, as well as cancer and neurodegenerative diseases.


2016 ◽  
Vol 61 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Inmaculada Martínez-Reyes ◽  
Lauren P. Diebold ◽  
Hyewon Kong ◽  
Michael Schieber ◽  
He Huang ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3679-3685 ◽  
Author(s):  
Wei Ren ◽  
Ao Ji ◽  
Omran Karmach ◽  
David G. Carter ◽  
Manuela M. Martins-Green ◽  
...  

Dark for light: A fluorescence quencher was turned into a near-infrared probe for mitochondrial membrane potential in living cells and mice.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5897-5897 ◽  
Author(s):  
Ipek Durusu ◽  
Hazal Hepsen Husnugil ◽  
Heval Atas ◽  
Aysenur Biber ◽  
Selin Gerekci ◽  
...  

Abstract Multiple myeloma (MM) is a malignant neoplasm of bone marrow plasma B cells with high morbidity. Clofazimine (CLF) is an FDA-approved leprostatic, anti-tuberculosis, and anti-inflammatory drug that was previously shown to have growth suppression effects on various cancer types such as hepatocellular, lung, cervix, esophageal, colon, and breast cancers as well as melanoma, neuroblastoma, and leukemia cells. The objective of this study was to evaluate the anticancer effect of CLF on U266 resistant MM cell line. The relative cell viability of a panel of hematological cell lines (Jurkat, U266, Namalwa, K562, HL60) treated with 10 µM CLF after 24 h of treatment significantly reduced the viability in all cell lines, with percentages ranging between 28% (U266) and 38% (Jurkat) (p<0.001). IC50 value of CLF was found as 9.8 ± 0.7 µM on the U266 cell line. Previous studies showed that this level of CLF does not inhibit growth of healthy cells, which supports safety of CLF. CLF had both dose (2, 5, 10 µM) and time (12, 24, and 48 h) dependent growth inhibitory effect. Combination chemotherapy is an approach to increase the effectiveness of chemotherapeutics as well as overcome drug resistance and suppresses side effects of drugs. Therefore, we evaluate the combination effect of CLF in U266 cells and showed that combination with cisplatin led to a synergistic interaction between two compounds in all tested dose regimes, resulting in a 2.5-7.1 fold marked increase in cell death. Importantly this synergism was observed in U266 cells, which have mutant p53 at A161T showing resistance to cytotoxic agents such as platinum analogs (cisplatin etc.). <>Depolarization of the mitochondrial membrane is one of the first events in apoptosis. JC-1 is a lipophilic and cationic dye that reversibly changes color from green to red as the mitochondrial membrane potential increases (depolarization). JC-1 assay used in both flow cytometry analyses and fluorescence microscopy images have shown that relative to the control, CLF treatment results in the depolarization of mitochondrial membrane 15, 20.5, 14.3 fold respectively at 12, 24, and 48 h in U266 cell line (Figure 1). The caspase family of cysteine proteases plays an important role in apoptosis. Caspase-3 is a major protease activated during the early stages of programmed cell death. 10 µM CLF was applied for 12, 24, and 48 h and anti-active caspase-3 PE stained U266 cells were analyzed by flow cytometry. Caspase-3 activity is enhanced 5.6, 24.5 and 13.6-fold relative to untreated controls at 12h, 24h and 48 h respectively. Phosphatidylserine (PS) translocation to the outer leaflet of the cellular membrane is one of the key steps in early stages of apoptosis. To support our previous findings on apoptotic effect of CLF, we employed Annexin-V assay. CLF treatment caused a significant increase in the percentage of early and late apoptotic cells at 12 h (2.1 and 1.8 fold respectively), 24 h (4.1 and 12.3 fold) and 48 h (10.1 and 11.5 fold). Fluorescence microscopy images also supported flow cytometry data (Figure 2). Collectively, all three apoptosis assay results show that CLF significantly induces apoptosis in U266 cells. Our study is the first to show apoptotic and growth inhibitory effects of CLF on a p53-mutant resistant MM cell line U266. Our results also proved that combined therapy employing CLF together with chemotherapeutics seems to be a possible future therapeutic approach for MM. Further in vivo and clinical studies are warranted to evaluate its therapeutic potential for resistant MM treatment. Figure 1 Effect of 10 µM CLF on mitochondrial membrane potential. Flow cytometry fluorescence intensity A) Dot plots B) Bar plots of cells stained with JC-1 (n=3). C) Fluorescence microscopy image of JC-1-stained untreated cells indicating healthy mitochondria (red), D) In CLF-treated cells, green color shows diffusion of JC-1 from damaged mitochondria. Figure 1. Effect of 10 µM CLF on mitochondrial membrane potential. Flow cytometry fluorescence intensity A) Dot plots B) Bar plots of cells stained with JC-1 (n=3). C) Fluorescence microscopy image of JC-1-stained untreated cells indicating healthy mitochondria (red), D) In CLF-treated cells, green color shows diffusion of JC-1 from damaged mitochondria. Figure 2 Flow cytometry analysis of Annexin V-PE/7-AAD stained U266 cells treated with 10 µM CLF. A) Representative dot plots of Annexin V-PE vs 7-AAD signals gated as live, early apoptotic and late apoptotic quadrants B) Cell population bar graphs of corresponding dot plot quadrants (n=3). C) Early apoptotic U266 cell (right) stained with Annexin V-PE (green) and a late apoptotic U266 cell (left) stained with both Annexin V-PE (green) and nuclear dye PI (red) D) Close-up micrograph (160X) of a late apoptotic U266 cell. Figure 2. Flow cytometry analysis of Annexin V-PE/7-AAD stained U266 cells treated with 10 µM CLF. A) Representative dot plots of Annexin V-PE vs 7-AAD signals gated as live, early apoptotic and late apoptotic quadrants B) Cell population bar graphs of corresponding dot plot quadrants (n=3). C) Early apoptotic U266 cell (right) stained with Annexin V-PE (green) and a late apoptotic U266 cell (left) stained with both Annexin V-PE (green) and nuclear dye PI (red) D) Close-up micrograph (160X) of a late apoptotic U266 cell. Disclosures No relevant conflicts of interest to declare.


Zygote ◽  
2015 ◽  
Vol 24 (4) ◽  
pp. 529-536 ◽  
Author(s):  
Chihiro Kanno ◽  
Sung-Sik Kang ◽  
Yasuyuki Kitade ◽  
Yojiro Yanagawa ◽  
Yoshiyuki Takahashi ◽  
...  

SummaryThe present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen–thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE–PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE–PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE–PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE–PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.


Sign in / Sign up

Export Citation Format

Share Document