scholarly journals Reexpression of blood group ABH antigens on the surface of human thyroid cells in culture.

1982 ◽  
Vol 94 (1) ◽  
pp. 193-200 ◽  
Author(s):  
E L Khoury

Using indirect immunofluorescence (IFL) on viable human thyroid cultures, it has been shown that, although adult follicular cells do not express blood group ABH antigens in vivo, they invariably reexpress the corresponding antigens on the cell surface when cultured in monolayers, even for very short periods. The absence of blood group antigens on noncultured thyroid cells was confirmed by negative IFL on cell suspensions obtained after enzymatic digestion of the glands, whereas these antigens were readily demonstrable on cell suspensions obtained by trypsinization of established monolayers. The quantitative expression of ABH antigens on individual thyroid cells was variable and the cell-surface IFL pattern due to binding of blood group isoantibodies was different from that given by organ-specific thyroid autoantibodies on viable cultures. Reexpression of blood group antigens by cultured thyroid cells could not be related to the secretor status of the donors, the presence of a particular source of serum in the culture medium or cell division in vitro. After 2-3 wk in culture, thyroid cells became morphologically dedifferentiated and no longer displayed blood group antigens, though they still expressed cell-surface beta 2-microglobulin. Fibroblasts present in the primary thyroid cultures were invariably negative for ABH antigens. These results demonstrate that the surface antigenic repertoire of cultured human cells is not necessarily identical to that present on the same cells in vivo. Furthermore, the possibility that blood group natural isoantibodies bind to the cell surface must be taken into account in experiments in which cultured thyroid cells are exposed to human sera.

1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009237
Author(s):  
Yusheng Guo ◽  
Rosario Adriana Candelero-Rueda ◽  
Linda Jean Saif ◽  
Anastasia Nickolaevna Vlasova

Rotaviruses (RVs) are a leading cause of acute viral gastroenteritis in young children and livestock worldwide. Growing evidence suggests that host cellular glycans, such as histo-blood group antigens (HBGAs) and sialic acids (SA), are recognized by the RV surface protein VP4. However, a mechanistic understanding of these interactions and their effects on RV infection and pathogenesis is lacking. Here, we established a porcine crypt-derived 3D intestinal enteroids (PIEs) culture system which contains all intestinal epithelial cells identified in vivo and represents a unique physiologically functional model to study RV-glycan interactions in vitro. PIEs expressing different HBGAs (A+, H+, and A+/H+) were established and isolation, propagation, differentiation and RV infection conditions were optimized. Differentiated PIEs were infected with human RV (HRV) G1P[8] Wa, porcine RV (PRV) G9P[13], PRV Gottfried G4P[6] or PRV OSU G5P[7] virulent and attenuated strains and virus replication was measured by qRT-PCR. Our results indicated that virulent HRV G1P[8] Wa replicated to the highest titers in A+ PIEs, while a distinct trend was observed for PRV G9P[13] or G5P[7] with highest titers in H+ PIEs. Attenuated Wa and Gottfried strains replicated poorly in PIEs while the replication of attenuated G9P[13] and OSU strains in PIEs was relatively efficient. However, the replication of all 4 attenuate strains was less affected by the PIE HBGA phenotypes. HBGA synthesis inhibitor 2-F-Peracetyl-Fucose (2F) treatment demonstrated that HBGAs are essential for G1P[8] Wa replication; however, they may only serve as a cofactor for PRVs G9P[13] and OSU G5P[7]. Interestingly, contrasting outcomes were observed following sialidase treatment which significantly enhanced G9P[13] replication, but inhibited the growth of G5P[7]. These observations suggest that some additional receptors recognized by G9P[13] become unmasked after removal of terminal SA. Overall, our results confirm that differential HBGAs-RV and SA-RV interactions determine replication efficacy of virulent group A RVs in PIEs. Consequently, targeting individual glycans for development of therapeutics may not yield uniform results for various RV strains.


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


1988 ◽  
Vol 119 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Z. Kraiem ◽  
R. Alkobi ◽  
O. Sadeh

ABSTRACT Using an in-vitro system of cultured human thyroid cells and cyclic AMP (cAMP) accumulation as an index of cell stimulation, we compared TSH and thyroid-stimulating immunoglobulin (TSI) with regard to thyrocyte sensitization and desensitization. The smallest dose of TSH (0·05 mU/ml) capable of stimulating thyroid cells was the same as the minimum dose required to induce desensitization upon subsequent rechallenge with the hormone. In contrast, about 30-fold higher doses of TSI were needed to cause cell refractoriness compared with doses capable of eliciting stimulation. Moreover, significant stimulation of the thyroid with TSI was apparent much later than with TSH. A longer time-lapse was also necessary for TSI to induce densensitization. Likewise, thyrocytes recovered more slowly from TSI compared with TSH desensitization. Although at high doses TSI induced homologous desensitization, at lower doses the antibody, unlike TSH, potentiated the cAMP response to subsequent exposure to the antibody. The stimulatory doses of TSI were in the range usually encountered in active Graves' disease, which may explain why prolonged TSI in vivo sustains a hyperthyroid condition. In addition, we found that under conditions in which TSH leads to desensitization of the cAMP response, the thyroid cells maintained their responsiveness in terms of triiodothyronine secretory activity. Pre-exposure of human thyrocytes to TSI induced heterologous desensitization towards the TSH-stimulated cAMP response. Moreover, addition of the antibody to maximally desensitizing doses of TSH decreased cell sensitivity to the hormone even further. In sharp contrast, preincubation of cells with TSH, or TSH plus TSI, potentiated by four- and twofold respectively the cAMP response to subsequent challenge with TSI. Taken together, the data reveal marked differences between the action of TSH and TSI, and raise interesting questions concerning the mechanism whereby TSH potentiates the cAMP response to TSI. J. Endocr. (1988) 119, 341–349


1977 ◽  
Vol 72 (1) ◽  
pp. 87-96 ◽  
Author(s):  
S. P. BIDEY ◽  
P. MARSDEN ◽  
J. ANDERSON ◽  
C. G. McKERRON ◽  
H. BERRY

SUMMARY Follicular cells isolated from normal human thyroid tissue have been cultured for up to 140 h with bovine thyrotrophin (TSH) or dibutyryl cyclic AMP (DBcAMP). Both compounds induced marked reorganization of the cells into three-dimensional follicular structures, whilst non-supplemented cells assumed a monolayer form. Cultures treated initially with TSH or DBcAMP showed a greater iodide uptake capacity, in comparison with unsupplemented cultures, in which iodide uptake was markedly diminished after 24 h. The release of tri-iodothyronine (T3) and thyroxine (T4) into the medium was determined by radioimmunoassay. Both TSH- and DBcAMP-treated cells showed a significant increase in iodothyronine output compared with unsupplemented control cells. In contrast to the 'classical' TSH-induced depression of the T4:T3 ratio in vivo, an increase in the ratio was observed for both TSH- and DBcAMP-supplemented cells in vitro. The ratio was also significantly greater after TSH than after DBcAMP, and possible implications of this finding are discussed.


Blood ◽  
1960 ◽  
Vol 15 (6) ◽  
pp. 884-900 ◽  
Author(s):  
FLOSSIE COHEN ◽  
WOLF W. ZUELZER ◽  
MARGARET M. EVANS

Abstract It is possible to produce fluorescence of erythrocytes as the result of specific antigen-antibody reactions of various blood group antigens; thus far, the factors A and B, a variety of Rh antigens and Kidd, have been successfully demonstrated with this method. It is important to realize that in the presence of adequate negative controls, low intensity fluorescence like that obtained with Rh antigens is nevertheless specific in systems involving erythrocytes. The method discriminates between A1 and A2 cells. More antibody must be attached to the red cell for fluorescence than for agglutination. The relative paucity of antigenic sites of Rh substance as compared to A and B antigens is reflected by the difference in intensity of fluorescence. The fluorescent antibody technic has been used successfully for the demonstration, and, to some extent, quantitation of minor cell populations in in vitro mixtures and in vivo. Injected Rh-positive erythrocytes were demonstrated in the blood of an Rh-negative volunteer during a period of 20 days. Fetal Rh-positive erythrocytes were demonstrated in several Rh-negative women, both with and without antibody, in the last trimester of gestation.


2010 ◽  
Vol 84 (17) ◽  
pp. 8617-8625 ◽  
Author(s):  
Tibor Farkas ◽  
Robert W. Cross ◽  
Edwin Hargitt ◽  
Nicholas W. Lerche ◽  
Ardythe L. Morrow ◽  
...  

ABSTRACT Recently, we reported the discovery and characterization of Tulane virus (TV), a novel rhesus calicivirus (CV) (T. Farkas, K. Sestak, C. Wei, and X. Jiang, J. Virol. 82:5408-5416, 2008). TV grows well in tissue culture, and it represents a new genus within Caliciviridae, with the proposed name of Recovirus. We also reported a high prevalence of CV antibodies in macaques of the Tulane National Primate Research Center (TNPRC) colony, including anti-norovirus (NoV), anti-sapovirus (SaV), and anti-TV (T. Farkas, J. Dufour, X. Jiang, and K. Sestak, J. Gen. Virol. 91:734-738, 2010). To broaden our knowledge about CV infections in captive nonhuman primates (NHP), 500 rhesus macaque stool samples collected from breeding colony TNPRC macaques were tested for CVs. Fifty-seven (11%) samples contained recovirus isolates. In addition, one NoV was detected. Phylogenetic analysis classified the recovirus isolates into two genogroups and at least four genetic types. The rhesus NoV isolate was closely related to GII human NoVs. TV-neutralizing antibodies were detected in 88% of serum samples obtained from primate caretakers. Binding and plaque reduction assays revealed the involvement of type A and B histo-blood group antigens (HBGA) in TV infection. Taken together, these findings indicate the zoonotic potential of primate CVs. The discovery of a genetically diverse and prevalent group of primate CVs and remarkable similarities between rhesus enteric CVs and human NoVs opens new possibilities for research involving in vitro and in vivo models of human NoV gastroenteritis.


1979 ◽  
Vol 83 (3) ◽  
pp. 303-NP ◽  
Author(s):  
JOCELYNE URSELY ◽  
PIERRE LEYMARIE

Luteal cell suspensions obtained by enzymatic digestion of pregnant cow corpus luteum were found to be heterogenous and mainly made up of two types of cells of different sizes. The large cells (37 μm, average diameter) could be separated from the small ones (18 μm, average diameter) by sedimentation at unit gravity in a gradient of Ficoll–bovine serum albumin. A comparative in-vitro study of the synthesis of progesterone by the two types of cells indicated striking differences between them. The average content and the synthesis of progesterone in the absence and presence of a saturating dose of bovine LH after incubation for 2 h were 0·07, 0·12 and 6·9 pg/cell for the small cells and 0·65, 2 and 10 pg/cell for the large ones. Moreover, the sensitivity to low concentrations of LH was 100 to 1000 times higher for the small cells than for the large ones. oestradiol-17β at concentrations ranging from 5 × 10−10 to 5 × 10−4 mol/l exerted a dose–dependent inhibition on the stimulation of LH in both cell types. These results suggest a possible involvement of both cell types in the synthesis of progesterone in vivo with a greater contribution by the small cells to stimulation induced by LH. Moreover, it appears that small cell suspensions could be a useful model system for in-vitro studies of the control of the synthesis of progesterone in cow corpus luteum.


2021 ◽  
Author(s):  
Antonina Khoruzhenko ◽  
Françoise Miot ◽  
Claude Massart ◽  
Jacqueline Van Sande ◽  
Jacques-Emile Dumont ◽  
...  

Background: Long term maintenance of functional activity of thyroid cells is an essential requirement for basic in vitro studies on the physiology and pathology of the thyroid. An important prerequisite of thyrocytes’ functional activity in vivo and in vitro is their follicle organization. Aim: This study aimed at developing a method of cultivation of functionally active rat thyroid follicles in Matrigel under three-dimensional conditions. Methods: Undamaged rat thyroid follicles were isolated by enzymatic digestion with collagenase/dispase, then embedded into Matrigel, and cultivated for two weeks. Thyroglobulin, thyroxine and zonula occludens-1 (ZO-1) localization were revealed by immunofluorescence analysis. Iodide organification was tested by protein bound 125I (PBI) measurement. Results: Integrity of the follicles was preserved during the whole period of cultivation and was confirmed by 3D reconstruction of ZO-1 localization. Thyroglobulin was detected in thyrocyte cytoplasm, as well as in the intrafollicular lumen. Thyroxine was observed predominantly at the apical side of thyrocytes. Also, generated cultures were characterized by high level of iodide organification: PB125I represented 39 % of the total radioactivity in the Matrigel drop embedding the follicles; at the same time, methimazole almost totally inhibited this process (0.2 % of total radioactivity). Conclusion: The method of rat thyrocyte cultivation in Matrigel, as described here allows to maintain the structural integrity and the functional activity of thyroid follicles in vitro and could be used for wide ranges of basic and applied researches in thyroidology.


Sign in / Sign up

Export Citation Format

Share Document