scholarly journals Take Me Home, Protein Roads: Structural Insights into Signal Peptide Interactions during ER Translocation

2021 ◽  
Vol 22 (21) ◽  
pp. 11871
Author(s):  
A. Manuel Liaci ◽  
Friedrich Förster

Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.

1982 ◽  
Vol 95 (2) ◽  
pp. 470-477 ◽  
Author(s):  
R Gilmore ◽  
P Walter ◽  
G Blobel

The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt-extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease-digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.


1993 ◽  
Vol 120 (5) ◽  
pp. 1113-1121 ◽  
Author(s):  
D Zopf ◽  
H D Bernstein ◽  
P Walter

The 54-kD subunit of the signal recognition particle (SRP54) binds to signal sequences of nascent secretory and transmembrane proteins. SRP54 consists of two separable domains, a 33-kD amino-terminal domain that contains a GTP-binding site (SRP54G) and a 22-kD carboxy-terminal domain (SRP54M) containing binding sites for both the signal sequence and SRP RNA. To examine the function of the two domains in more detail, we have purified SRP54M and used it to assemble a partial SRP that lacks the amino-terminal domain of SRP54 [SRP(-54G)]. This particle recognized signal sequences in two independent assays, albeit less efficiently than intact SRP. Analysis of the signal sequence binding activity of free SRP54 and SRP54M supports the conclusion that SRP54M binds signal sequences with lower affinity than the intact protein. In contrast, when SRP(-54G) was assayed for its ability to promote the translocation of preprolactin across microsomal membranes, it was completely inactive, apparently because it was unable to interact normally with the SRP receptor. These results imply that SRP54G plays an essential role in SRP-mediated targeting of nascent chain-ribosome complexes to the ER membrane and also influences signal sequence recognition, possibly by promoting a tighter association between signal sequences and SRP54M.


2012 ◽  
Vol 68 (a1) ◽  
pp. s38-s38
Author(s):  
E. Sauer-Eriksson ◽  
S. Huang ◽  
G. Meriläinen ◽  
K. Brännström ◽  
T. Hainzl

2012 ◽  
Vol 23 (16) ◽  
pp. 3027-3040 ◽  
Author(s):  
Ying Zhang ◽  
Uta Berndt ◽  
Hanna Gölz ◽  
Arlette Tais ◽  
Stefan Oellerer ◽  
...  

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


2005 ◽  
Vol 187 (9) ◽  
pp. 2983-2991 ◽  
Author(s):  
Damon Huber ◽  
Dana Boyd ◽  
Yu Xia ◽  
Michael H. Olma ◽  
Mark Gerstein ◽  
...  

ABSTRACT We have previously reported that the DsbA signal sequence promotes efficient, cotranslational translocation of the cytoplasmic protein thioredoxin-1 via the bacterial signal recognition particle (SRP) pathway. However, two commonly used signal sequences, those of PhoA and MalE, which promote export by a posttranslational mechanism, do not export thioredoxin. We proposed that this difference in efficiency of export was due to the rapid folding of thioredoxin in the cytoplasm; cotranslational export by the DsbA signal sequence avoids the problem of cytoplasmic folding (C. F. Schierle, M. Berkmen, D. Huber, C. Kumamoto, D. Boyd, and J. Beckwith, J. Bacteriol. 185 :5706-5713, 2003). Here, we use thioredoxin as a reporter to distinguish SRP-dependent from non-SRP-dependent cleavable signal sequences. We screened signal sequences exhibiting a range of hydrophobicity values based on a method that estimates hydrophobicity. Successive iterations of screening and refining the method defined a threshold hydrophobicity required for SRP recognition. While all of the SRP-dependent signal sequences identified were above this threshold, there were also a few signal sequences above the threshold that did not utilize the SRP pathway. These results suggest that a simple measure of the hydrophobicity of a signal sequence is an important but not a sufficient indicator for SRP recognition. In addition, by fusing a number of both classes of signal sequences to DsbA, we found that DsbA utilizes an SRP-dependent signal sequence to achieve efficient export to the periplasm. Our results suggest that those proteins found to be exported by SRP-dependent signal sequences may require this mode of export because of their tendency to fold rapidly in the cytoplasm.


Nature ◽  
2010 ◽  
Vol 465 (7297) ◽  
pp. 507-510 ◽  
Author(s):  
Claudia Y. Janda ◽  
Jade Li ◽  
Chris Oubridge ◽  
Helena Hernández ◽  
Carol V. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document