scholarly journals Thin filaments are not of uniform length in rat skeletal muscle.

1983 ◽  
Vol 96 (1) ◽  
pp. 100-103 ◽  
Author(s):  
L Traeger ◽  
M A Goldstein

The variation in thin filament length was investigated in slow and fast muscle from adult and neonatal rats. Soleus (slow) muscle from adult, 3-, 7-, and 9-d-old rats, and extensor digitorum longus (EDL; fast) muscle from adult rats were serially cross-sectioned. The number of thin filaments per 0.06 microns2 (TF#) was counted for individual myofibrils followed from the H zone of one sarcomere, through the I-Z-I region, to the H zone of an adjacent sarcomere TF# was pooled by distance from the Z band or AI junction. In both adult muscles, thin filament length varied from 0.18 to 1.20 microns, with approximately 25% of the thin filaments less than 0.7 microns in length. In 7- and 9-d soleus, thin filament length ranged from 0.18 to 1.08 microns; except for the longest (0.18 to 1.20 microns) filaments, the distribution of thin filament lengths was similar to that in adult muscle. In 3-d soleus, thin filament length was more uniform, with less than 5% of the filaments shorter than 0.7 microns. In all neonatal muscles, there were approximately 15% fewer thin filaments per unit area as compared to adult muscles. We conclude: (a) In rat skeletal muscle, thin filaments are not of uniform length, ranging in length from 0.18 to 1.20 microns. (b) There may be two stages of thin filament assembly in neonatal muscle: between 3 and 7 d when short thin filaments may be preferentially or synthesized or inserted near the Z-band, and between 9 d and adult when thin filaments of all lengths may be synthesized or inserted into the myofibril.

2009 ◽  
Vol 296 (5) ◽  
pp. C1123-C1132 ◽  
Author(s):  
David S. Gokhin ◽  
Marie-Louise Bang ◽  
Jianlin Zhang ◽  
Ju Chen ◽  
Richard L. Lieber

Nebulin (NEB) is a large, rod-like protein believed to dictate actin thin filament length in skeletal muscle. NEB gene defects are associated with congenital nemaline myopathy. The functional role of NEB was investigated in gastrocnemius muscles from neonatal wild-type (WT) and NEB knockout (NEB-KO) mice, whose thin filaments have uniformly shorter lengths compared with WT mice. Isometric stress production in NEB-KO skeletal muscle was reduced by 27% compared with WT skeletal muscle on postnatal day 1 and by 92% on postnatal day 7, consistent with functionally severe myopathy. NEB-KO muscle was also more susceptible to a decline in stress production during a bout of 10 cyclic isometric tetani. Length-tension properties in NEB-KO muscle were altered in a manner consistent with reduced thin filament length, with length-tension curves from NEB-KO muscle demonstrating a 7.4% narrower functional range and an optimal length reduced by 0.13 muscle lengths. Expression patterns of myosin heavy chain isoforms and total myosin content did not account for the functional differences between WT and NEB-KO muscle. These data indicate that NEB is essential for active stress production, maintenance of functional integrity during cyclic activation, and length-tension properties consistent with a role in specifying normal thin filament length. Continued analysis of NEB's functional properties will strengthen the understanding of force transmission and thin filament length regulation in skeletal muscle and may provide insights into the molecular processes that give rise to nemaline myopathy.


1993 ◽  
Vol 120 (2) ◽  
pp. 411-420 ◽  
Author(s):  
V M Fowler ◽  
M A Sussmann ◽  
P G Miller ◽  
B E Flucher ◽  
M P Daniels

The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Coen A. C. Ottenheijm ◽  
Henk Granzier

One important feature of muscle structure and function that has remained relatively obscure is the mechanism that regulates thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length. Another structural feature of skeletal muscle that is not well understood is the mechanism involved in maintaining the regular lateral alignment of adjacent sarcomeres, that is, myofibrillar connectivity. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. Thus, novel structural roles of nebulin in skeletal muscle involve the regulation of thin filament length and maintaining myofibrillar connectivity. When these functions of nebulin are absent, muscle weakness ensues, as is the case in patients with nemaline myopathy with mutations in nebulin. Here we review these new insights in the role of nebulin in skeletal muscle structure.


1998 ◽  
Vol 85 (5) ◽  
pp. 1903-1908 ◽  
Author(s):  
Ronald R. Gomes ◽  
Frank W. Booth

We examined the age-related association in skeletal muscle between atrophy and expression of mRNAs encoding both the γ-subunit of the nicotinic acetylcholine receptor (AChR), and myogenin, a transcription factor that upregulates expression of the γ-subunit promoter. Gastrocnemius and biceps brachii muscles were collected from young (2-mo-old), adult (18-mo-old), and old (31-mo-old) Fischer 344/Brown Norway F1 generation cross male rats. In the gastrocnemius muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated AChR γ-subunit and myogenin mRNA levels. In contrast, the biceps brachii muscle exhibited neither atrophy nor as drastic a change in AChR γ-subunit and myogenin mRNA levels with age. Expression of the AChR ε-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Thus changes in skeletal muscle AChR γ-subunit and myogenin mRNA levels may be more related to atrophy than to chronological age in old rats.


2008 ◽  
Vol 131 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Takako Terui ◽  
Munguntsetseg Sodnomtseren ◽  
Douchi Matsuba ◽  
Jun Udaka ◽  
Shin'ichi Ishiwata ◽  
...  

We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased upon sTn reconstitution at submaximal levels, coupled with an increase in Ca2+ sensitivity of force, suggesting the acceleration of cross-bridge formation and, accordingly, a reduction in the fraction of resting cross-bridges that can potentially produce additional active force. An increase in titin-based passive force, induced by manipulating the prehistory of stretch, enhanced length-dependent activation, in both control and sTn-reconstituted muscles. Furthermore, reconstitution of rabbit fast skeletal muscle with porcine left ventricular Tn enhanced length-dependent activation, accompanied by a decrease in Ca2+ sensitivity of force. These findings demonstrate that Tn plays an important role in the Frank-Starling mechanism of the heart via on–off switching of the thin filament state, in concert with titin-based regulation.


2014 ◽  
Vol 206 (4) ◽  
pp. 559-572 ◽  
Author(s):  
Isabelle Fernandes ◽  
Frieder Schöck

Mutations in nebulin, a giant muscle protein with 185 actin-binding nebulin repeats, are the major cause of nemaline myopathy in humans. Nebulin sets actin thin filament length in sarcomeres, potentially by stabilizing thin filaments in the I-band, where nebulin and thin filaments coalign. However, the precise role of nebulin in setting thin filament length and its other functions in regulating power output are unknown. Here, we show that Lasp, the only member of the nebulin family in Drosophila melanogaster, acts at two distinct sites in the sarcomere and controls thin filament length with just two nebulin repeats. We found that Lasp localizes to the Z-disc edges to control I-band architecture and also localizes at the A-band, where it interacts with both actin and myosin to set proper filament spacing. Furthermore, introducing a single amino acid change into the two nebulin repeats of Lasp demonstrated different roles for each domain and established Lasp as a suitable system for studying nebulin repeat function.


1986 ◽  
Vol 56 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Keld Kjeldsen ◽  
Maria Elisabeth Everts ◽  
Torben Clausen

1. Using vanadate-facilitated [3H]ouabain binding, the effect of semi-starvation on the total concentration of [3H]ouabain-binding sites was determined in samples of rat skeletal muscle. When 12-week-old rats were semi-starved for 1, 2 or 3 weeks on one-third to half the normal daily energy intake, the [3H]ouabain-binding site concentration in soleus muscle was reduced by 19, 24 and 25% respectively. In extensor digitorum longus, diaphragm and gastrocnemius muscles the decrease after 2 weeks of semi-starvation was 15, 18 and 17% respectively. The decrease was fully reversible within 3 d of free access to the diet. Complete deprivation of food for 5 d caused a reduction of 25% in soleus muscle [3H]ouabain-binding-siteconcentration. It was excluded that the reduction in [3H]ouabain binding was due to a reduced affinity of the binding site for [3H]ouabain.2. Semi-starvation of 12-week-old rats for 3 weeks caused a reduction of 45 and 53% in 3, 5, 3'-triiodothyronine (T3) and thyroxine (T4) levels respectively. As reduced thyroid hormone levels have previously been found to decrease [3H]ouabain-binding-siteconcentration in skeletal muscle, this points to the importance of T3 and T4 in the down-regulation of the [3H]ouabain-binding-siteconcentration in skeletal muscle with semi-starvation. Whereas potassium depletion caused a decrease in K content as well as in [3H]ouabain-binding-siteconcentration in skeletal muscles, semi-starvation caused only a tendency to a decrease in K content. Thus, K depletion is not a major cause of the reduction in [3H]ouabain-binding-siteconcentration with semi-starvation.3. Due to its high concentration of Na, K pumps, skeletal muscle has a considerable capacity for clearing K from the plasma as well as for the binding of digitalis glycosides. Semi-starvation causes a severe reduction in the total skeletal muscle pool of Na, K pumps and may therefore be associated with impairment of K tolerance and increased digitalis toxicity.


Sign in / Sign up

Export Citation Format

Share Document