scholarly journals Diffusion and regionalization in membranes of maturing ram spermatozoa.

1984 ◽  
Vol 98 (5) ◽  
pp. 1678-1684 ◽  
Author(s):  
D E Wolf ◽  
J K Voglmayr

An essential feature of the "fluid mosaic model" (Singer, S. J., and G. L. Nicolson , 1972, Science (Wash. DC)., 175:720-731) of the cell plasma membrane is the ability of membrane lipids and proteins to diffuse laterally in the plane of the membrane. Mammalian sperm are capable of overcoming free random diffusion and restricting specific membrane components, both lipid and protein, to defined regions of the sperm's surface. The patterns of these regionalizations evolve with the processes of sperm differentiation: spermatogenesis, epididymal maturation, and capacitation. We have used the technique of fluorescence recovery after photobleaching to measure the diffusion of the lipid analogue 1,1'- dihexadecyl 3,3,3',3'- tetramethylindocarbocyanine perchlorate ( C16dil ) on the different morphological regions of testicular and ejaculated ram spermatozoa. We have found: (a) that the major morphologically distinct regions (head, midpiece, and tail) of the plasma membrane of both testicular and ejaculated spermatozoa are also physically distinct as measured by C16dil diffusibility; (b) that despite regional differences in diffusibility there is exchange of this lipid analogue by lateral diffusion between the major morphological regions of the plasma membrane; and (c) that epididymal maturation results in changes in C16dil diffusibility in the different regions of the sperm plasma membrane. In particular, the plasma membranes of the anterior and posterior heads become physically distinct.

2006 ◽  
Vol 18 (4) ◽  
pp. 469 ◽  
Author(s):  
Rhett McClean ◽  
Catriona MacCallum ◽  
David Blyde ◽  
William V. Holt ◽  
Stephen D. Johnston

The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Tris-citrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P < 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa (P < 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4°C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol (P < 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.


1986 ◽  
Vol 103 (5) ◽  
pp. 1745-1750 ◽  
Author(s):  
D E Wolf ◽  
B K Scott ◽  
C F Millette

The lipids and proteins of sperm cells are highly regionalized in their lateral distribution. Fluorescence recovery after photobleaching studies of sperm membrane component lateral diffusibility have shown that the sperm plasma membrane is also highly regionalized in the extents and rates of diffusion of its surface components. These studies have also shown that regionalized changes in lateral diffusibility occur during the differentiative processes of epididymal maturation and capacitation. Unlike mammalian somatic cells, sperm cells exhibit large nondiffusing lipid fractions. In this paper, we will show that both regionalized lipid diffusibility and nondiffusing lipid fractions develop with the morphogenesis of cell shape during spermatogenesis in the mouse. Pachytene spermatocytes and round spermatids show diffusion rates and the nearly complete recoveries (80-90%) typical of mammalian somatic cells. In contrast, stage 10-11 condensing spermatids, testicular spermatozoa, cauda epididymal spermatozoa, as well as the anucleate structures associated with these later stages of spermatogenesis (residual bodies and the cytoplasmic droplets of condensing spermatids and testicular spermatozoa), exhibit large nondiffusing fractions. Both the diffusion rates and diffusing fractions observed on the anterior and posterior regions of the head of stage 10-11 condensing spermatids are the same as the values obtained for these regions on testicular spermatozoa. Possible mechanisms of lipid immobilization and possible physiological implications of this nondiffusing lipid are discussed.


Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


1986 ◽  
Vol 239 (2) ◽  
pp. 301-310 ◽  
Author(s):  
W D Sweet ◽  
F Schroeder

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5′-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.


1976 ◽  
Vol 154 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J P Luzio ◽  
A C Newby ◽  
C N Hales

1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5′-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 μm-adrenaline.


1991 ◽  
Vol 1061 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Ajay P.S. Rana ◽  
Gopal C. Majumder ◽  
Suniti Misra ◽  
Amitabha Ghosh

2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


1987 ◽  
Vol 241 (3) ◽  
pp. 801-807 ◽  
Author(s):  
R T Earl ◽  
E E Billett ◽  
I M Hunneyball ◽  
R J Mayer

Reconstituted Sendai-viral envelopes (RSVE) were produced by the method of Vainstein, Hershkovitz, Israel & Loyter [(1984) Biochim. Biophys. Acta 773, 181-188]. RSVE are fusogenic unilamellar vesicles containing two transmembrane glycoproteins: the HN (haemagglutinin-neuraminidase) protein and the F (fusion) factor. The fate of the viral proteins after fusion-mediated transplantation of RSVE into hepatoma (HTC) cell plasma membranes was studied to probe plasma-membrane protein degradation. Both protein species are degraded at similar, relatively slow, rates (t1/2 = 67 h) in HTC cells fused with RSVE in suspension. Even slower degradation rates for HN and F proteins (t1/2 = 93 h) were measured when RSVE were fused with HTC cells in monolayer. Lysosomal degradation of the transplanted viral proteins is strongly implicated by the finding that degradation of HN and F proteins is sensitive to inhibition by 10 mM-NH4Cl (81%) and by 50 micrograms of leupeptin/ml (70%).


1992 ◽  
Vol 47 (11-12) ◽  
pp. 929-931 ◽  
Author(s):  
Antonio del Castillo-Olivares ◽  
Javier Márquez ◽  
Ignacio Núñez de Castro ◽  
Miguel Angel Medina

Ehrlich cell plasma membrane vesicles have a ferricyanide reductase activity that shows two phases. These two phases were kinetically characterized. Evidence is presented for a differential effect of trypsin on both phases


Sign in / Sign up

Export Citation Format

Share Document