scholarly journals RUBELLA VIRUS CARRIER CULTURES DERIVED FROM CONGENITALLY INFECTED INFANTS

1966 ◽  
Vol 123 (5) ◽  
pp. 795-816 ◽  
Author(s):  
William E. Rawls ◽  
Joseph L. Melnick

Spontaneous rubella carrier cultures derived from tissues of infants with congenital rubella were studied in an attempt to elucidate a possible mechanism for viral persistence observed in these infants. Chronically infected cells were found to have a reduced growth rate and the cultures appeared to have a shortened life span. The rubella carrier state was not dependent on serum inhibitors or rubella antibodies. Virtually every cell in the carrier population was found to be producing virus. The carrier cultures could not be cured by rubella antibodies. The rubella-infected cells were resistant to superinfection with vesicular stomatitis virus and herpes simplex virus but were susceptible to infection with echovirus 11. The replication of vesicular stomatitis virus was apparently blocked at an intracellular site, for the virus readily adsorbed to the chronically infected cells and entered into an eclipse phase; however no infectious virus developed. No evidence of interferon production by these cells could be obtained. It is postulated that clones of rubella-infected cells in vivo, with properties similar to those in carrier cultures developed in vitro from tissues of in utero infected infants, might explain the observed viral persistence noted in congenital rubella.

1999 ◽  
Vol 73 (9) ◽  
pp. 7199-7209 ◽  
Author(s):  
Elizabeth A. Stillman ◽  
Michael A. Whitt

ABSTRACT In this report we describe a novel, bipartite vesicular stomatitis virus (VSV) replication system which was used to study the effect of mutations in the transcription start sequence on transcript initiation and 5′-mRNA modifications. The bipartite replication system consisted of two genomic RNAs, one of which (VSVΔG) was a recombinant VSV genome with the G gene deleted and the other (GFC) contained the G gene and two non-VSV reporter genes (green fluorescent protein [GFP] and chloramphenicol acetyltransferase [CAT]). Coinfection of cells with these two components resulted in high-level virus production and gave titers similar to that from wild-type-VSV-infected cells. Mutations were introduced within the first 3 nucleotides of the transcription start sequence of the third gene (CAT) of GFC. The effects of these changes on the synthesis and accumulation of CAT transcripts during in vivo transcription (e.g., in infected cells), and during in vitro transcription were determined. As we had reported previously (E. A. Stillman and M. A. Whitt, J. Virol. 71:2127–2137, 1997), changing the first and third nucleotides (NT-1 and NT-3) reduced CAT transcript levels in vivo to near undetectable levels. Similarly, changing NT-2 to a purine also resulted in the detection of very small amounts of CAT mRNA from infected cells. In contrast to the results in vivo, the NT-1C mutant and all of the second-position mutants produced near-wild-type amounts of CAT mRNA in the in vitro system, indicating that the mutations did not prevent transcript initiation per se but, rather, generated transcripts that were unstable in vivo. Oligo (dT) selection and Northern blot analysis revealed that the transcripts produced from these mutants did not contain a poly(A)+ tail and were truncated, ranging in size from 40 to 200 nucleotides. Immunoprecipitation analysis of cDNA-RNA hybrids with an antibody that recognizes trimethylguanosine revealed that the truncated mutant transcripts were not properly modified at the 5′ end, indicating the transcripts either were not capped or were not methylated. This is the first demonstration that transcript initiation and capping/methylation are separable events during VSV transcription. A model is proposed in which polymerase processivity is linked to proper 5′-end modification. The model suggests that a proofreading mechanism exists for VSV and possibly other nonsegmented minus-strand RNA viruses, whereby if some transcripts do not become capped during transcription in a normal infection, a signal is transduced such that the polymerase undergoes abortive elongation and the defective transcript is terminated prematurely and subsequently degraded.


1977 ◽  
Vol 74 (1) ◽  
pp. 43-57 ◽  
Author(s):  
MJ Grubman ◽  
JA Weinstein ◽  
DA Shafritz

Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.


2006 ◽  
Vol 80 (23) ◽  
pp. 11733-11742 ◽  
Author(s):  
Zackary W. Whitlow ◽  
John H. Connor ◽  
Douglas S. Lyles

ABSTRACT Host protein synthesis is inhibited in cells infected with vesicular stomatitis virus (VSV). It has been proposed that viral mRNAs are subjected to the same inhibition but are predominantly translated because of their abundance. To compare translation efficiencies of viral and host mRNAs during infection, we used an enhanced green fluorescent protein (EGFP) reporter expressed from a recombinant virus or from the host nucleus in stably transfected cells. Translation efficiency of host-derived EGFP mRNA was reduced more than threefold at eight hours postinfection, while viral-derived mRNA was translated around sevenfold more efficiently than host-derived EGFP mRNA in VSV-infected cells. To test whether mRNAs transcribed in the cytoplasm are resistant to shutoff of translation during VSV infection, HeLa cells were infected with a recombinant simian virus 5 (rSV5) that expressed GFP. Cells were then superinfected with VSV or mock superinfected. GFP mRNA transcribed by rSV5 was not resistant to translation inhibition during superinfection with VSV, indicating that transcription in the cytoplasm is not sufficient for preventing translation inhibition. To determine if cis-acting sequences in untranslated regions (UTRs) were involved in preferential translation of VSV mRNAs, we constructed EGFP reporters with VSV or control UTRs and measured the translation efficiency in mock-infected and VSV-infected cells. The presence of VSV UTRs did not affect mRNA translation efficiency in mock- or VSV-infected cells, indicating that VSV mRNAs do not contain cis-acting sequences that influence translation. However, we found that when EGFP mRNAs transcribed by VSV or by the host were translated in vitro, VSV-derived EGFP mRNA was translated 22 times more efficiently than host-derived EGFP mRNA. This indicated that VSV mRNAs do contain cis-acting structural elements (that are not sequence based), which enhance translation efficiency of viral mRNAs.


2020 ◽  
Vol 86 ◽  
pp. 106783
Author(s):  
Qianqian Di ◽  
Huihui Zhu ◽  
Debing Pu ◽  
Xibao Zhao ◽  
Xiaoli Li ◽  
...  

2003 ◽  
Vol 77 (1) ◽  
pp. 732-738 ◽  
Author(s):  
Ashim K. Gupta ◽  
Daniel Shaji ◽  
Amiya K. Banerjee

ABSTRACT Our laboratory's recent observations that transcriptionally inactive phosphoprotein (P) mutants can efficiently function in replicating vesicular stomatitis virus (VSV) defective interfering particle in a three-plasmid-based (L, P, and N) reverse genetics system in vivo (A. K. Pattnaik, L. Hwang, T. Li, N. Englund, M. Mathur, T. Das, and A. K. Banerjee, J. Virol. 71:8167-8175, 1997) led us to propose that a tripartite complex consisting of L-(N-P) protein may represent the putative replicase for synthesis of the full-length genome RNA. In this communication we demonstrate that such a complex is indeed detectable in VSV-infected BHK cells. Furthermore, coexpression of L, N, and P proteins in Sf21 insect cells by recombinant baculovirus containing the respective genes also resulted in the formation of a tripartite complex, as shown by immunoprecipitation with specific antibodies. A basic amino acid mutant of P protein, P260A, previously shown to be inactive in transcription but active in replication (T. Das, A. K. Pattnaik, A. M. Takacs, T. Li, L. N. Hwang, and A. K. Banerjee, Virology 238:103-114, 1997) was also capable of forming the mutant [L-(N-Pmut)] complex in both insect cells and BHK cells. Sf21 extract containing either the wild-type P protein or the mutant P protein along with the L and N proteins was capable of synthesizing 42S genome-sense RNA in an in vitro replication reconstitution reaction. Addition of N-Pmut or wild-type N-P complex further stimulated the synthesis of the genome-length RNA. These results indicate that the transcriptase and replicase complexes of VSV are possibly two distinct entities involved in carrying out capped mRNAs and uncapped genome and antigenome RNAs, respectively.


1998 ◽  
Vol 72 (7) ◽  
pp. 6159-6163 ◽  
Author(s):  
Akihiro Abe ◽  
Atsushi Miyanohara ◽  
Theodore Friedmann

ABSTRACT Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo.


2004 ◽  
Vol 78 (2) ◽  
pp. 912-921 ◽  
Author(s):  
Maria A. Croyle ◽  
Shellie M. Callahan ◽  
Alberto Auricchio ◽  
Gregg Schumer ◽  
Klause D. Linse ◽  
...  

ABSTRACT One disadvantage of vesicular stomatitis virus G (VSV-G) pseudotyped lentivirus vectors for clinical application is inactivation of the vector by human serum complement. To prevent this, monomethoxypoly(ethylene) glycol was conjugated to a VSV-G-human immunodeficiency virus vector expressing Escherichia coli beta-galactosidase. The modification did not affect transduction efficiency in vitro and protected the vector from inactivation in complement-active human and mouse sera. Blood from mice dosed intravenously with either the unmodified or the PEGylated virus particles was assayed for active vector by a limiting-dilution assay to evaluate transduction efficiency and for p24, an indicator of the total number of virus particles present. PEGylation extended the circulation half-life of active vector by a factor of 5 and reduced the rate of vector inactivation in the serum by a factor of 1,000. Pharmacokinetic profiles for the total number of virus particles present in the circulation were unaffected by PEGylation. Modification of the vector with poly(ethylene) glycol significantly enhanced transduction efficiency in the bone marrow and in the spleen 14 days after systemic administration of the virus. These results, in concert with the pharmacokinetic profiles, indicate that PEGylation does protect the virus from inactivation in the serum and, as a result, improves the transduction efficiency of VSV-G pseudotyped lentivirus vectors in susceptible organs in vivo.


2003 ◽  
pp. 73-80 ◽  
Author(s):  
L Barzon ◽  
R Bonaguro ◽  
I Castagliuolo ◽  
M Chilosi ◽  
E Franchin ◽  
...  

OBJECTIVE AND DESIGN: Based on our clinical experience with combined gene therapy of glioblastoma, we developed a retroviral vector expressing two therapeutic genes (i.e. thymidine kinase of herpes simplex virus, HSV-TK, and interleukin-2, IL-2) and evaluated its efficiency in vitro and in vivo. METHODS: Expression of therapeutic genes in transduced thyroid carcinoma cells was analyzed by real-time RT-PCR. Ganciclovir sensitivity of infected cells was assessed in vitro in thyroid carcinoma cell lines and in vivo in nude mice bearing xenografted thyroid cancers. The combined effect of IL-2/HSV-TK was compared with the effect of IL-2 alone. RESULTS: Expression of therapeutic genes was higher in differentiated than in anaplastic thyroid carcinoma cells. Ganciclovir treatment led to dose- and time-dependent killing of transduced cells in vitro. A bystander effect was demonstrated by using mixtures of infected and non-infected cells. In vivo studies showed a significant reduction of growth and the presence of an inflammatory infiltrate in transduced thyroid tumors expressing IL-2 alone, as compared with non-infected tumors. By using the retroviral vector expressing IL-2/HSV-TK, treatment with ganciclovir led to complete eradication of anaplastic tumors and a >80% reduction of the size of differentiated thyroid carcinomas. Histological analysis of tumor specimens showed extensive necrosis and inflammatory cell infiltrates. The combination of IL-2/HSV-TK plus ganciclovir was significantly more efficient than IL-2 alone in eradicating tumor masses. The bystander effect was also obtained in vivo. CONCLUSIONS: These findings demonstrate the feasibility and efficiency of a combined immunomodulating and suicide gene therapy approach for thyroid carcinomas.


1987 ◽  
Vol 104 (3) ◽  
pp. 749-760 ◽  
Author(s):  
W E Balch ◽  
K R Wagner ◽  
D S Keller

Transport of the vesicular stomatitis virus-encoded glycoprotein (G protein) between the endoplasmic reticulum (ER) and the cis Golgi compartment has been reconstituted in a cell-free system. Transfer is measured by the processing of the high mannose (man GlcNAc2) ER form of G protein to the man5GlcNAc5 form by the cis Golgi enzyme alpha-mannosidase I. G protein is rapidly and efficiently transported to the Golgi complex by a process resembling that observed in vivo. G protein is trimmed from the high mannose form to the man5GlcNAc2 form without the appearance of the intermediate man GlcNAc2 oligosaccharide species, as is observed in vivo. G protein is found in a sealed membrane-bound compartment before and after incubation. Processing in vitro is sensitive to detergent, and the Golgi alpha-mannosidase I inhibitor 1-deoxymannorjirimycin. Transport between the ER and Golgi complex in vitro requires the addition of a high speed supernatant (cytosol) of cell homogenates, and requires energy in the form of ATP. Efficient reconstitution of export of protein from the ER requires the preparation of homogenates from mitotic cell populations in which the nuclear envelope, ER, and Golgi compartments have been physiologically disassembled before cell homogenization. These results suggest that the high efficiency of transport observed here may require reassembly of functional organelles in vitro.


1996 ◽  
Vol 183 (5) ◽  
pp. 2209-2218 ◽  
Author(s):  
A Oxenius ◽  
K A Campbell ◽  
C R Maliszewski ◽  
T Kishimoto ◽  
H Kikutani ◽  
...  

CD40-CD40 ligand (CD40L) interaction is required for the generation of antibody responses to T-dependent antigens as well as for the development of germinal centers and memory B cells. The role of the CD40-CD40L interaction in the induction of antigen-specific. Th cells and in mediating Th cell effector functions other than cognate help for B cells is less well understood. Using CD40- and CD40L-deficient mice together with lymphocytic choriomeningitis virus and vesicular stomatitis virus as viral model antigens, this study corroborates earlier findings that no lg isotype switching of virus-specific antibodies was measurable upon infection of CD40- or CD40L-deficient mice. In contrast, in vivo induction of virus-specific CD4+ T cells measured by proliferation and cytokine secretion of primed virus-specific Th cells in vitro was not crucially dependent on the CD40-CD40L interaction. In addition, virus-specific Th cells primed in a CD40-deficient environment, adoptively transferred into CD40-competent recipients, were able to mediate lg isotype switch. Th-mediated effector functions distinct from and in addition to T-B collaboration were analyzed in CD40- and CD40L-deficient and normal mice: (a) local inflammatory reactions upon LCMV infection mediated by LCMV-specific Th cells were not dependent on a functional CD40-CD40L interaction, (b) cytokine-mediated protection by CD4+ T cells primed by vesicular stomatitis virus against a challenge infection with recombinant vaccinia virus expressing the glycoprotein of vesicular stomatitis virus was found to be equivalent in CD40L-deficient and normal mice. Thus, CD40-CD40L interaction plays a crucial role in T-B interactions for Th-dependent activation of B cells but not, or to a much lesser extent, in T cell activation, antigen-specific Th cell responses in vitro, and for interleukin-mediated Th cell effector functions in vivo.


Sign in / Sign up

Export Citation Format

Share Document