scholarly journals CELLS MEDIATING SPECIFIC IN VITRO CYTOTOXICITY

1972 ◽  
Vol 135 (4) ◽  
pp. 890-906 ◽  
Author(s):  
Pierre Golstein ◽  
Hans Wigzell ◽  
Henric Blomgren ◽  
Erik A. J. Svedmyr

In order to investigate whether only T cells are involved in a cell-mediated cytotoxic system in vitro, we tested the cytotoxicity of immune killing cell populations as deprived as possible of B cells. Educated thymus cells, immune spleen cells purified by filtration through a column of beads coated with antimouse Ig antiserum, and finally educated thymus cells further purified by filtration through such a column fully retained their specific cytotoxic activity. This very strongly suggests that only T cells are involved in the killing of target cells by allogeneic immune cells in vitro, in this system. Receptor-bearing cells involved in killing in the present system are thus very probably T cells. This point was further strengthened by the demonstration of specific adsorption, on the relevant monolayers, of each of the three above mentioned killing cell populations.

1971 ◽  
Vol 133 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Klaus-Ulrich Hartmann

Spleen cells of bone marrow chimeras (B cells) and of irradiated mice injected with thymus cells and heterologous erythrocytes (educated T cells) were mixed and cultured together (17). The number of PFC developing in these cultures was dependent both on the concentration of the B cells and of the educated T cells. In excess of T cells the number of developing PFC is linearly dependent on the number of B cells. At high concentrations of T cells more PFC developed; the increase in the number of PFC was greatest between the 3rd and 4th day of culture. Increased numbers of educated T cells also assisted the development of PFC directed against the erythrocytes. It is concluded that the T cells not only play a role during the triggering of the precursor cells but also during the time of proliferation of the B cells; close contact between B and T cells seems to be needed to allow the positive activity of the T cells.


1979 ◽  
Vol 150 (1) ◽  
pp. 196-201 ◽  
Author(s):  
H R MacDonald ◽  
R K Less

The requirement for DNA synthesis during the primary differentiation of cytolytic T lymphocytes (CTL) had been investigated. CTL were induced polyclonally in vitro by stimulation of normal C57BL/6 spleen cells with concanavalin A (Con A)and their cytolytic activity was tested against 51Cr-labeled target cells in the presence of Bacto Phytohemagglutinin M. With this system, CTL activity could first be detected 48 h after exposure of spleen cells to Con A. Addition of cytosine arabinoside at concentrations sufficient to reduce DNA synthesis by 95-98% in Con A-stimulated cultures did not significantly inhibit the generation of cytolytic activity on a cell-to-cell basis. These results demonstrate that derepression of the genetic information required for the expression of CTL function can occur in the absence of detectable DNA synthesis.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


1970 ◽  
Vol 132 (6) ◽  
pp. 1267-1278 ◽  
Author(s):  
Klaus-Ulrich Hartmann

The immune response to foreign erythrocytes was studied in vitro. Two subpopulations of cells were prepared. One was a population of bone marrow-derived spleen cells, taken from thymectomized, irradiated, and bone marrow-reconstituted mice; there was evidence that most of the precursors of the PFC had been present in this cell population, but few PFC developed in cultures of these cells alone in the presence of immunogenic erythrocytes. Another cell suspension was made from spleens of mice which had been irradiated and injected with thymus cells and erythrocytes; these cells were called educated T cells. The two cell suspensions together allow the formation of PFC in the presence of the erythrocytes which were used to educate the T cells, but not in the presence of noncross-reacting erythrocytes. If bone marrow-derived cells and T cells were kept in culture together with two different species of erythrocytes, and if one of the erythrocytes had been used to educate the T cells, then PFC against each of the erythrocytes could be detected.


1978 ◽  
Vol 148 (5) ◽  
pp. 1271-1281 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp

Virgin spleen cells develop comparable primary antibody responses in vitro to syngeneic or allogeneic macrophages (Mphi) bearing the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), whereas immune spleen cells primed with syngeneic or allogeneic GAT-Mphi develop secondary responses preferentially when stimulated with GAT-Mphi syngeneic to the GAT-Mphi used for priming in vivo. These restrictions are mediated by products of the I-A subregion of the H-2 complex and are operative at the level of the GAT-Mphi-immune helper T-cell interactions. To investigate why these immune spleen cells fail to develop a significant antibody response to GAT-Mphi other than those used for in vivo immunization and determine the mechanism by which the restriction is maintained, spleen cells from virgin and syngeneic or allogeneic GAT-Mphi-primed mice were co-cultured in the presence of GAT-Mphi of various haplotypes. Antibody responses to GAT developed only in the presence of GAT-Mphi syngeneic to the Mphi used for in vivo priming; responses in cultures with GAT-Mphi allogeneic to the priming Mphi, whether these Mphi were syngeneic or allogeneic with respect to the responding spleen cells, were suppressed. The suppression was mediated by GAT-specific radiosensitive T cells. Thus, development of GAT-specific suppressor T cells appears to be a natural consequence of the immune response to GAT in responder as well as nonresponder mice. The implications of stimulation of genetically restricted immune helper T cells, and antigen-specific, but unrestricted, suppressor T cells after immunization with GAT-Mphi in vivo are discussed in the context of regulatory mechanisms in antibody responses.


1973 ◽  
Vol 138 (1) ◽  
pp. 16-32 ◽  
Author(s):  
H. Fuji ◽  
F. Milgrom

In vitro cultures of spleen cells (S) from normal 8–10-wk-old DBA/2J mice were shown to develop a small number of plaque-forming cells (PFC) that released antibodies lytic to syngenic and autologous thymus cells as well as to syngenic lymphoma L5178Y cells used as the target in the PFC assay. A marked increase in the number of PFC detectable on L5178Y target cells was demonstrated on day 4 in the cultures of S cells to which syngenic or autologous thymus cells had been added (S+T) at time 0, whereas the PFC detectable on thymus cells in such cultures remained at a level similar to that in S cultures. This suggested that two populations of PFC participated in the observed phenomena. No PFC developed in the culture of thymus cells (T). The addition of the cell-free supernatants of 24-h cultures of T or of L5178Y cells to syngenic S cultures also caused a specific increase in the number of the PFC detectable on L5178Y, which suggested that certain immunogenic factors released from the T cells stimulated the response observed in the S+T cultures. Antibodies of IgM nature were detected in the supernatants of S+T cultures by means of cytolysis in agar of L5178Y cells. Although such antibodies did not cause lysis of thymus cells, they could be completely removed by absorption with normal adult or fetal thymus cells of syngenic origin. Still, the absorbing capacity of L5178Y was much higher than that of thymus cells. The absorption was more efficient at 4°C than at 22°C, and hardly any absorption occurred at 37°C. The tissue distribution of the antigen under study seemed to be restricted to thymus cells since no other murine tissue cells tested removed the antibodies. The thymic antigen under study was not restricted to strain DBA/2J and could be demonstrated on thymus cells of all other strains tested. On the other hand, the ability of spleen cells to respond in vitro to this antigen has thus far been observed only in DBA/2J mice. Spleen cells of strains C57BL/6J and NZB/BINJ as well as (DBA/2 x NZB)F1 failed to show any significant increase in the PFC response detectable on the L5178Y target when syngenic thymus cells or DBA/2J thymus cells were added. An intravenous injection of syngenic thymus cells to DBA/2J mice also caused the appearance in their spleens of PFC detectable on the L5178Y target. The described in vitro system may provide a good means of studying the cellular basis of generation of self-tolerance and of its breakdown.


1976 ◽  
Vol 144 (2) ◽  
pp. 305-318 ◽  
Author(s):  
K F Lindahl ◽  
F H Bach

The nature of the antigens stimulating xenogeneic lymphocytes was studied using "primed LD typing". Human lymphocytes were sensitized in vitro against mouse spleen cells and restimulated with spleen cells of mouse strains sharing non-H-2 antigens or various regions of H-2 with the initial stimulating strain. The largest thymidine uptake was caused by restimulation with cells from the specific primary stimulator or an H-2-identical strain. Species-specific antigens or strain-specific antigens carried in the C57BL/10 background account for less than 15% of the total stimulation; a non-H-2 antigen associated with the Mlsalpha genotype caused moderate restimulation, amounting to 25% of the average H-2 response. Within H-2, the strongest restimulation was caused by antigens controlled by the I-A subregion; the K and D regions caused moderate, the I-C and S regions very weak, and the I-B subregion no restimulation. Thus, the genetic control of antigens stimulating xenogeneic and allogeneic MLC responses requires T cells and adherent cells, but in the human-mouse MLC, both cell types must come from the human responder; the majority of the proliferating cells are T cells. It is suggested that allograft and xenograft reactions are fundamentally identical processes, and that the relative vigor of alloaggression may be explained by secondary potentiating mechanisms depending on species-specific interactions between aggressor and target cells.


1976 ◽  
Vol 143 (2) ◽  
pp. 437-443 ◽  
Author(s):  
R M Zinkernagel

Lymphocytic choriomeningitis or vaccinia virus-immune spleen cells of H-2 mutant mice carrying a point mutation in the K region (B6 H-2ba, B6 H-2bf) cannot lyse infected wild-type H-2Kb targets and vice versa. Yet, cytotoxic T cells specific for infected H-2Kba or H-2Kbf targets are generated during virus infections as shown by cold target competition experiments. The critical structure for the apparent restriction by the K or D regions of the H-2 gene complex of cytolytic interactions between T cells and virus-infected target cells are therefore each coded, at least as shown for the K region, by a single cistron. This finding is most readily accommodated within the altered self concept (postulating that T cells are specific for virus-modified self structures) but cannot exclude the possibility of a physiological interaction mechanism being responsible for the apparent H-2 restriction of virus-specific cytotoxic T cells.


1977 ◽  
Vol 146 (2) ◽  
pp. 600-605 ◽  
Author(s):  
J Forman

Spleen cells sensitized against trinitrophenyl (TNP)-modified stimulator cells displayed a cytotoxic effect against syngeneic TNP-modified but not dinitrophenyl (DNP)-modified target cells. The same finding was observed in the opposite direction; that is, effector cells sensitized against DNP-modified stimulator cells did not cross kill TNP-modified targets. The specificity of the anti-TNP effector cells was confirmed in a cold target competition assay. Presensitization in vivo with hapten-modified cells followed by rechallenge and testing in vitro did not alter the specificity of the response between the haptens. These data indicate that the receptor(s) on the cytotoxic T cell can distinguish between two closely related haptenic molecules.


Sign in / Sign up

Export Citation Format

Share Document