scholarly journals H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. The H-2K structure involved is coded by a single cistron defined by H-2Kb mutant mice.

1976 ◽  
Vol 143 (2) ◽  
pp. 437-443 ◽  
Author(s):  
R M Zinkernagel

Lymphocytic choriomeningitis or vaccinia virus-immune spleen cells of H-2 mutant mice carrying a point mutation in the K region (B6 H-2ba, B6 H-2bf) cannot lyse infected wild-type H-2Kb targets and vice versa. Yet, cytotoxic T cells specific for infected H-2Kba or H-2Kbf targets are generated during virus infections as shown by cold target competition experiments. The critical structure for the apparent restriction by the K or D regions of the H-2 gene complex of cytolytic interactions between T cells and virus-infected target cells are therefore each coded, at least as shown for the K region, by a single cistron. This finding is most readily accommodated within the altered self concept (postulating that T cells are specific for virus-modified self structures) but cannot exclude the possibility of a physiological interaction mechanism being responsible for the apparent H-2 restriction of virus-specific cytotoxic T cells.

1986 ◽  
Vol 164 (1) ◽  
pp. 363-368 ◽  
Author(s):  
S H Kaufmann ◽  
E Hug ◽  
G De Libero

Lyt-2+ T cell clones were established from Listeria monocytogenes-infected mice. The clones secreted IFN-gamma after stimulation with spleen cells from L. monocytogenes-infected mice plus IL-2. Spleen cells from normal mice were not stimulatory. Furthermore, cloned T cells lysed L. monocytogenes-infected macrophages. Cytolysis was antigen-specific and H-2K-restricted. These findings suggest a role for specific cytotoxic T cells in the immune response to intracellular bacteria.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


1977 ◽  
Vol 145 (3) ◽  
pp. 644-651 ◽  
Author(s):  
R M Zinkernagel ◽  
A Althage

Virus-immune cytotoxic T cells can inhibit effectively growth of vaccinia virus in acutely infected target cells in vitro by destroying infected target cells before infectious virus progeny is assembled. Together with the fact that virus-specific T cells are demonstrable after 3 days, very early during infection, and with strong circumstantial evidence from adoptive transfer models in vivo, these data suggest that in some virus infections T cells may in fact act cytolytically in vivo to prevent virus growth and spread and be an important early antiviral effector mechanism.


1982 ◽  
Vol 155 (3) ◽  
pp. 749-767 ◽  
Author(s):  
J Forman ◽  
J Trial ◽  
S Tonkonogy ◽  
L Flaherty

B6.KI mice were immunized with spleen cells from B6.K2, a Qa2-subregion congenic strain. Cytotoxic T cells were generated that recognize two target antigens controlled by this region. One of the target antigens is Qa-2. This was demonstrated by the findings that pretreatment of target cells with monoclonal anti-Qa-2 antibody blocked lysis of target cells, and Qa-2 target antigens and serological determinants had a concordant distribution on a panel of B10.W (wild) mice. The gene controlling the Qa-2 target antigen is not polymorphic because B6.K2 and three strains of Qa-2(+) B10.W mice express the same antigens, as determined by a CTL cold target competition assay. Anti-Qa-2 CTL were H-2 unrestricted because effector cells lysed Qa-2(+) targets irrespective of their H-2 haplotype, including five B 10.W strains, and lysis was not inhibited by pretreating target cells with anti-H-2 sera. The Qa2 subregion does not act as a restricting locus for anti-minor-H antigen CTL. A second target antigen was detected that was associated with the expression of the Qa-5 determinant. However, CTL activity could not be blocked by pretreating target cells with monoclonal anti-Qa-5. Therefore, the CTL target antigen may be expressed on a Qa-5(-) molecule. Although the Qa-5 associated CTL specificity is only detected on H-2D(b) strains, it is unlikely that CTL recognition is H-2 restricted because anti-H-2(b) sera has no effect in blocking this reactivity. Qa-2 and H-2 class I antigens share a similar structure and serve as target antigens for unrestricted CTL. However, unlike class I H-2 genes, Qa-2 neither restricts antigen-specific CTL nor is polymorphie. Therefore, it is likely that Qa-2 and H-2 are derived from a common ancestral gene and have evolved to serve different functions.


1976 ◽  
Vol 144 (4) ◽  
pp. 933-945 ◽  
Author(s):  
R M Zinkernagel

During infection with lymphocytic choriomeningitis or vaccinia virus, F1 irradiation chimeras reconstituted with bone marrow cells from or both parents generate cytotoxic T cells which can lyse targets across the H-2 barrier. However, activity of chimera T cells is H-2 restricted as shown by cold target competition experiments and selective restimulation of a secondary response in vitro; T cells of H-2k specificity which lyse tolerated infected H-2d target cells do not lyse infected H-2k or unrelated target cells and vice versa. Therefore, H-2 restriction of virus-specific cytotoxic T cells probably does not reflect need for like-like self-interactions for lysis to occur. The specificity of virus immune T cells is thus determined by the H-2K and H-2D specificities present in the infected animal and which are probably recognized unidirectionally by T cells. The results are compatible with the idea the T cells are specific for "altered alloantigen", i.e., a complex of cell surface marker and viral antigen. Alternatively, explained with a dual recognition model, T cells may possess two independently, clonally expressed receptors, a self-recognizer which is expressed for one of the syngeneic or tolerated allogeneic K or D "self" markers, and an immunologically specific receptor for viral antigen.


1980 ◽  
Vol 30 (2) ◽  
pp. 473-483
Author(s):  
R M Welsh ◽  
W F Doe

The characteristics and specificities of spleen and peritoneal cytotoxic cells generated during lymphocytic choriomeningitis virus (LCMV) infection of C3H/St mice were examined. Activated natural killer (NK) cell activity was identified in fresh leukocyte populations from the 2nd to 8th days postinfection, whereas virus-specific cytotoxic T-cell activity was detected from the 6th to 14th days. When leukocytes were cultured overnight at 37 degrees C before assay, T-cell activity was still observed, but nonspecific activated NK cell-like cytotoxicity was only detected on the 6th and to a lesser degree the 8th day postinfection. Overnight culture of leukocytes taken earlier in the infection eliminated their NK cell activity. Similar activities were seen with spleen cell, plastic-adherent peritoneal cell, and nonadherent peritoneal cell populations. The virus-specific cytotoxicity observed with adherent peritoneal cells was due to contamination with cytotoxic T cells, as shown by H-2-restricted cytotoxicity and sensitivity to anti-theta antibody and complement. The nonspecific cultured day 6 effector cell from either the spleen or peritoneum displayed killing specificities and other physical properties identical to those of activated NK cells, but had sensitivities to anti-theta antibody and complement intermediate between activated day 3 NK cells and cytotoxic T cells. Culture stable NK-like cells were not found in athymic nude mice, suggesting a T-cell-dependent mechanism. Whereas LCMV spleen homogenates contained 10-fold-higher levels of interferon at day 2 than at day 6 postinfection, substantially more (nearly 20-fold) interferon was made in cultures of day 6 cells than day 2 cells. Spleen interferon was predominantly type I, whereas the culture interferon was predominantly type II, as shown by acid lability studies. Significant levels of interferon were produced by nylon-wool-passed day 6 spleen cells, and virtually all interferon production was eliminated by treatment of either day 2 or day 6 cells with antibody to theta antigen and complement, suggesting that T cells produced the interferon in vitro. Furthermore, athymic nude mice had no culture-stable NK cells 6 days postinfection, and spleen cells from them failed to produce significant levels of interferon in vitro. Addition of interferon (type I, fibroblast) to cultured C3H spleen cells affect the already elevated levels of cytotoxicity in day 6 cultures, suggesting that the NK cells in the day 6 culture were already activated. Our results suggest that T cells responding to LCMV infection secrete interferon type II which causes the continued activation of NK cells in culture. The resulting population of activated NK cells therefore appears to be relatively stable in culture and to express more theta antigen because of this T-cell dependence. Although one could mistakenly or allospecific cytotoxic T cells or cytotoxic macrophages, more careful examination shows that they are most likely activated NK cells...


1981 ◽  
Vol 154 (2) ◽  
pp. 491-500 ◽  
Author(s):  
HR Snodgrass ◽  
MJ Bosma ◽  
DB Wilson

This study describes long-term-cultured lines and clones of cytotoxic T cells (Tc) with specificity for determinants of the Igh-1(b) immunoglobulin allotype. These Tc clones were initiated by repeated stimulation of immune spleen cells from BALB/c mice with an Igh-1(b)-producing myeloma, and then they were maintained in medium supplemented with mitogen-induced growth factors in the absence offurther antigenic stimulation . The lytic potency of these clones was 30-100-fold greater than the primary cultures from which they were derived, and specificity studies showed them to be lytic for Igh-1(b) targets and not for targets expressing Igh-1(a) or Igh-4(b), nor the lipopolysaccharide blasts . Finally, soluble preparations of Ig were tested for their ability to block lysis of labeled Igh-1(b)-expressing targets. The results showed that Igh-1(b) and not other immunoglobulin allotypes or isotypes could block lysis, and that the mechanism of lytic inhibition is due to Igh-1(b)-induced autolysis of the killer cells.


1972 ◽  
Vol 135 (4) ◽  
pp. 890-906 ◽  
Author(s):  
Pierre Golstein ◽  
Hans Wigzell ◽  
Henric Blomgren ◽  
Erik A. J. Svedmyr

In order to investigate whether only T cells are involved in a cell-mediated cytotoxic system in vitro, we tested the cytotoxicity of immune killing cell populations as deprived as possible of B cells. Educated thymus cells, immune spleen cells purified by filtration through a column of beads coated with antimouse Ig antiserum, and finally educated thymus cells further purified by filtration through such a column fully retained their specific cytotoxic activity. This very strongly suggests that only T cells are involved in the killing of target cells by allogeneic immune cells in vitro, in this system. Receptor-bearing cells involved in killing in the present system are thus very probably T cells. This point was further strengthened by the demonstration of specific adsorption, on the relevant monolayers, of each of the three above mentioned killing cell populations.


1977 ◽  
Vol 146 (2) ◽  
pp. 600-605 ◽  
Author(s):  
J Forman

Spleen cells sensitized against trinitrophenyl (TNP)-modified stimulator cells displayed a cytotoxic effect against syngeneic TNP-modified but not dinitrophenyl (DNP)-modified target cells. The same finding was observed in the opposite direction; that is, effector cells sensitized against DNP-modified stimulator cells did not cross kill TNP-modified targets. The specificity of the anti-TNP effector cells was confirmed in a cold target competition assay. Presensitization in vivo with hapten-modified cells followed by rechallenge and testing in vitro did not alter the specificity of the response between the haptens. These data indicate that the receptor(s) on the cytotoxic T cell can distinguish between two closely related haptenic molecules.


Sign in / Sign up

Export Citation Format

Share Document