scholarly journals ACTIVATION OF T AND B LYMPHOCYTES IN VITRO

1974 ◽  
Vol 139 (1) ◽  
pp. 24-43 ◽  
Author(s):  
Dieter Armerding ◽  
David H. Katz

The present studies were undertaken to analyze the nature of the effect of bacterial lipopolysaccharide (LPS) on antibody production in vitro. We have done this by making comparative studies of the effects of LPS on in vitro primary and secondary antibody responses to soluble hapten-protein conjugates and to particulate and soluble sheep erythrocyte antigens. The results obtained demonstrate that the biological action of LPS in vitro may be predominantly manifested on the function of B lymphocytes or T lymphocytes depending on the conditions employed. In the absence of antigen, LPS appears to act primarily on B lymphocytes. In the presence of antigen, however, the data presented here show that LPS significantly influences specific helper T-cell function and it is this latter influence that is predominantly responsible for the adjuvant effects of LPS on antigen-specific antibody responses.

1976 ◽  
Vol 143 (6) ◽  
pp. 1421-1428 ◽  
Author(s):  
C E Calkins ◽  
S Orbach-Arbouys ◽  
O Stutman ◽  
R K Gershon

Normal T and immune B lymphocytes interact in a fashion that leads to suppression of the immune response. Normal spleen cells added to cultures of primed spleen cells specifically suppressed both the IgM and IgG secondary antibody response of the primed cells to less than 30% of the response of the immune cells cultured alone. Cell crowding as a possible in vitro artifact was ruled out. The suppression was specific for the priming antigen, even when the specific and nonspecific antigens were included in the same cultures. Suppression required both normal T and immune B cells to be present in culture. We suggest that the immune population produces a signal that can induce normal T cells to become specific suppressor cells. This form of interaction may represent an important regulatory (homeostatic) mechanism in the immune system.


1982 ◽  
Vol 156 (2) ◽  
pp. 658-663 ◽  
Author(s):  
G Nabel ◽  
W J Allard ◽  
H Cantor

We previously described a cloned cell line that combines information for a unique display of cell surface antigens and specialized function similar to activated natural killer (NK) cells. In addition to conventional cellular targets such as the YAC-1 and MBL-2 lymphomas, this cloned line also lysed lipopolysaccharide-activated B lymphocytes. To determine whether some NK cells can inhibit B cell function, we tested the ability of NK-like clones to suppress Ig secretion in vitro and in vivo. These cloned cells suppressed Ig secretion when they constituted as few as 0.2% of the total cell population and inhibition did not require identity at the H-2 locus. We suggest that some NK cells might recognize non-major histocompatibility complex gene products on activated B lymphocytes and lyse these cells, and this might represent a fundamental cell-cell interaction that regulates antibody secretion by activated B cells.


PEDIATRICS ◽  
1978 ◽  
Vol 61 (4) ◽  
pp. 619-624
Author(s):  
William T. Shearer ◽  
H. James Wedner ◽  
Donald B. Strominger ◽  
John Kissane ◽  
Richard Hong

A 6-month-old girl with congenital thymic dysplasia or Nezelof's syndrome (lack of T cell function and normal levels of immunoglobulins) was given a transplant of a human thymus gland from a 14-week-old fetus and is surviving 36 months after transplant. Her clinical condition is the principal index of the success of the transplant since most in vitro and in vivo data indicate a full immunologic restoration has not been achieved. However, the number of E-rosettes in the peripheral blood has increased, the number of surface immunoglobulin-bearing cells has decreased, but there is little improvement in mitogen responsitivity. Immunoglobulin levels have increased with age, but there is no demonstrable specific antibody activity. Nevertheless, she remains free of infection, living in an unprotected environment.


1992 ◽  
Vol 175 (1) ◽  
pp. 211-216 ◽  
Author(s):  
T G Yin ◽  
P Schendel ◽  
Y C Yang

The availability of large quantities of highly purified recombinant interleukin 11 (rhuIL-11) has allowed us to investigate the effects of rhuIL-11 on sheep red blood cell (SRBC)-specific antibody responses in the murine system. The results showed that rhuIL-11 was effective in enhancing the generation of mouse spleen SRBC-specific plaque-forming cells (PFC) in the in vitro cell culture system in a dose-dependent manner. These effects of rhuIL-11 were abrogated completely by the addition of anti-rhuIL-11 antibody, but not by the addition of preimmunized rabbit serum. Cell-depletion studies revealed that L3T4 (CD4)+ T cells, but not Lyt-2 (CD8)+ T cells, are required in the rhuIL-11-stimulated augmentation of SRBC-specific antibody responses. The effects of rhuIL-11 on the SRBC-specific antibody responses in vivo were also examined. RhuIL-11 administration to normal C3H/HeJ mice resulted in a dose-dependent increase in the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer in both the primary and secondary immune responses. In mice immunosuppressed by cyclophosphamide treatment, rhuIL-11 administration significantly augmented the number of spleen SRBC-specific PFC as well as serum SRBC-specific antibody titer when compared with the cyclophosphamide-treated mice without IL-11 treatment. These results demonstrated that IL-11 is a novel cytokine involved in modulating antigen-specific antibody responses in vitro as well as in vivo.


1976 ◽  
Vol 143 (6) ◽  
pp. 1327-1340 ◽  
Author(s):  
E S Metcalf ◽  
N R Klinman

The susceptibility of neonatal and adult B lymphocytes to tolerance induction was analyzed by a modification of the in vitro splenic focus technique. This technique permits stimulation of individual hapten-specific clonal precursor cells from both neonatal and adult donors. Neonatal or adult BALB/c spleen cells were adoptively transferred into irradiated, syngeneic, adult recipients which had been carrier-primed to hemocyanin (Hy), thus maximizing stimulation to the hapten 2,4-dinitrophenyl coupled by Hy (DNP-Hy). Cultures were initially treated with DNP on several heterologous (non-Hy) carriers and subsequently stimulated with DNP-Hy. Whereas the responsiveness of adult B cells was not diminished by pretreatment with any DNP conjugate, the majority of the neonatal B-cell response was abolished by in vitro culture with all of the DNP-protein conjugates. During the 1st wk of life, the ability to tolerize neonatal splenic B cells progressively decreased. Thus, tolerance in this system is: (a) restricted to B cells early in development; (b) established by both tolerogens and immunogens; (c) achieved at low (10(-9) M determinant) antigen concentrations; and (d) highly specific, discriminating between DNP- and TNP-specific B cells. We conclude that: (a) B lymphocytes, during their development, mature through a stage in which they are extremely susceptible to tolerogenesis; (b) the specific interaction of B-cell antigen receptors with multivalent antigens, while irrelevant to mature B cells, is tolerogenic to neonatal (immature) B cells unless antigen is concomitantly recognized by primed T cells; and (c) differences in the susceptibility of immature and mature B lymphocytes to tolerance induction suggest intrinsic differences between neonatal and adult B cells and may provide a physiologically relevant model for the study of tolerance to self-antigens.


1979 ◽  
Vol 149 (2) ◽  
pp. 495-506 ◽  
Author(s):  
B Subbarao ◽  
D E Mosier ◽  
A Ahmed ◽  
J J Mond ◽  
I Scher ◽  
...  

Lyb 5 is a B-cell alloantigen which is expressed on 50-60% of B cells. It was defined originally on the basis of cytotoxicity. We have described a new reactivity within the anti-Lyb 5 serum on the basis of selective inhibition of antibody responses in vitro by this antiserum in the absence of complement. This inhibitory activity of anti-Lyb 5.1 serum appears to be due to recognition of antigenic determinants different from the prototype antigens detected in the cytotoxicity assay. Anti-Lyb 5 serum incorporated into spleen cell cultures selectively inhibits antibody responses to a class of thymus-independent antigens (TI-2) previously characterized by their failure to elicit antibody formation in immature mice or in the defective CBA/N strain. Responses to optimal concentrations of TI-1 antigens, which can induce antibody synthesis in these mice, are unaffected by the addition of anti-Lyb 5.1 serum. The B-cell alloantigen defined by this functional assay is designated tentatively Lyb 7 and it is shown to be distinct from cell surface immunoglobulins. Lyb 7 appears to have a role in the activation of B lymphocytes by the TI-2 class of thymus-independent antigens.


1964 ◽  
Vol 120 (6) ◽  
pp. 987-1005 ◽  
Author(s):  
Donald A. Rowley ◽  
Frank W. Fitch

Passive immunization of rats with homologous anti-sheep erythrocyte serum markedly inhibited the primary antibody response to various doses of sheep erythrocytes. Inhibition was "specific" and apparently produced by either "19S" or "7S" antibody to the antigen. Passive immunization inhibited splenic hyperplasia associated with the primary antibody response. Passive immunization 24 hours after active immunization effectively inhibited the primary antibody response. The markedly suppressive effect of specific antibody on the primary antibody response contrasted sharply with the absence of this effect on the secondary response. Antigen-antibody complexes formed in vitro elicited no measurable primary antibody response but did elicit a high secondary response. Exposure of normal spleen cells to the antibody in vivo or in vitro suppressed their response to the antigen in x-irradiated recipients. In contrast, cells from previously immunized animals transferred to x-irradiated animals produced antibody in the presence of passively given antibody. Thus, "potential antibody-forming cells" from normal animals were unresponsive to the antigen in the presence of specific antibody, while "antibody-forming cells" from previously immunized animals responded to the antigen in the presence of antibody. Presumably, antibody actively produced in small quantities by a few antibody-forming cells might inhibit antibody formation by potential antibody-forming cells. Confirmation of this suggestion was obtained by showing that some animals initially injected with small doses of antigen failed to produce measurable antibody to subsequent injections of larger doses of the antigen. Low doses of antigen capable of inducing unresponsiveness produced no measurable circulating antibody, but these doses did produce increased numbers of plaque-forming (antibody-releasing) cells in spleens of rats. Thus, the formation of specific antibody may provide a homeostatic or "feed-back" mechanism which controls or limits production of specific antibody to the portion of the antibody-forming system previously stimulated by the antigen. This mechanism may account in part for immunological unresponsiveness produced in certain other related experimental systems.


1973 ◽  
Vol 137 (6) ◽  
pp. 1405-1418 ◽  
Author(s):  
David H. Katz ◽  
Toshiyuki Hamaoka ◽  
Baruj Benacerraf

Several experimental approaches, designed specifically to circumvent the possible contribution of a complicating "allogeneic effect," have been successfully used to answer the question of physiologic cooperative interactions between histoincompatible T and B lymphocytes in antibody responses to hapten-protein conjugates. This was accomplished for in vivo cell transfer studies by using an F1 hybrid host as the recipient of irradiated, carrier-primed T lymphocytes from one parent and 2,4-dinitrophenyl (DNP)-primed B lymphocytes from the opposite strain. Under these conditions, very good T-B cell cooperative interactions were observed to occur between T and B lymphocyte populations derived from syngeneic donors, whereas no cooperative response was obtained when T cells were derived from one parental strain and B cells from the other. Corroborative experiments were performed in a totally in vitro system in which DNP-primed B cells developed good secondary anti-DNP antibody responses in vitro to soluble DNP-keyhole limpet hemocyanin (KLH) when cultured in the presence of irradiated KLH-primed T cells derived from syngenic donors but not from allogeneic donors. The failure of histoincompatible T and B lymphocytes to effect physiologic cooperative interactions has important implications for our understanding of how such interactions normally occur. The possibility that these results reflect the existence of a "block" of some sort to cell-cell interaction by virtue of the presence of a foreign major histocompatibility antigen on the surface of either cell has been definitively ruled out in the present studies. These observations demonstrate that the gene(s) that conditions the capability for physiologic T-B cell cooperation must be shared in common by the respective cell types, and suggest, furthermore, that this gene (or genes) belongs to the major histocompatibility system of the mouse. These findings, together with other relevant phenomena described previously, have led us to postulate that there exists on the B lymphocyte surface an "acceptor" molecule either for the putative active T cell product or for the T cell itself. The important genetic considerations and the possible sequence of events surrounding the actual T-B cell interaction implied by these postulates are discussed in detail.


1976 ◽  
Vol 144 (2) ◽  
pp. 371-381 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp ◽  
B Benacerraf

The ability of antigen-bearing syngeneic and allogeneic peptone-induced peritoneal exudate macrophages to support development of primary and secondary antibody responses by murine lymphoid or spleen cells in vitro has been investigated. The antigen used was the terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Syngeneic and allogeneic macrophages supported development of comparable primary antibody responses to GAT, indicating that genetic restrictions do not limit efficient macrophage-lymphocyte interactions in primary responses. By contrast, immunized spleen or lymphoid cells developed secondary antibody responses preferentially when stimulated in vitro with GAT on macrophages syngeneic to the macrophages used to present GAT during in vivo immunization. Thus, genetic restrictions regulate efficient macrophage-lymphocyte interactions in secondary antibody responses. These restrictions have been demonstrated from 2 to 8 wk after a single immunization with limiting quantities of GAT and are controlled by the H-2 gene complex. The implications that immune lymphocytes selectively recognize and respond to antigen presented in the context of the macrophage membrane-antigen complex which sensitized the lymphocytes initially are considered.


Sign in / Sign up

Export Citation Format

Share Document