scholarly journals Normal rabbit alveolar macrophages. II. Their primary and secondary lysosomes as revealed by electron microscopy and cytochemistry.

1976 ◽  
Vol 144 (4) ◽  
pp. 920-932 ◽  
Author(s):  
B A Nichols

In this investigation, vacuoles containing tubular myelin proved to be digestive compartments with cytochemical reactivity for acid phosphatase and arylsulfatase. These cytochemical markers identify the secondary lysosomes, known to contain enzymes capable of hydrolyzing phospholipids like surfactant. Therefore, it appears that alveolar macrophages possess the enzymatic machinery for the degradation of the tubular myelin found in their digestive vacuoles. Although it thus appears evident that alveolar macrophages participate in the turnover of surfactant, the quantitative significance of this route of disposal is undetermined. This investigation has also established that acid hydrolases, so prominently displayed in the secondary lysosomes, are also localized in the rough endoplasmic reticulum and in Golgi-endoplasmic reticulum-lysosomes (GERL). Moreover, small vesicles which are produced from GERL serve as primary lysosomes in transporting digestive enzymes to the vacuoles.

Author(s):  
R. A. Turner ◽  
A. E. Rodin ◽  
D. K. Roberts

There have been many reports which establish a relationship between the pineal and sexual structures, including gonadal hypertrophy after pinealectomy, and gonadal atrophy after injection of pineal homogenates or of melatonin. In order to further delineate this relationship the pineals from 5 groups of female rats were studied by electron microscopy:ControlsPregnant ratsAfter 4 weekly injections of 0.1 mg. estradiol benzoate.After 8 daily injections of 150 mcgm. melatonin (pineal hormone).After 8 daily injections of 3 mg. serotonin (melatonin precursor).No ultrastructural differences were evident between the control, and the pregnancy and melatonin groups. However, the estradiol injected animals exhibited a marked increase in the amount and size of rough endoplasmic reticulum within the pineal cells.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


1973 ◽  
Vol 57 (2) ◽  
pp. 484-498 ◽  
Author(s):  
Rolf Seljelid ◽  
Samuel C. Silverstein ◽  
Zanvil A. Cohn

The effect of polycations on cultured mouse peitoneal macrophages has been examined. Polycations, at concentrations greater than 5 µg/ml, are toxic for macrophages) as measured by failure of the cells to exclude vital dyes. At toxic concentrations polycations bind in large amounts to nuclei and endoplasmic reticulum, while at nontoxic levels polycations bind selectively to the cell surface. Nontoxic concentrations of polycations stimulate binding of reovirus double-stranded (ds) RNA to the macrophages by forming polycation-dsRNA complexes either in the medium or at the cell surface. These complexes enter the cell in endocytic vacuoles and are concentrated in secondary lysosomes. Despite exposure to the acid hydrolases within this cell compartment, the dsRNA and the polycation (poly-L-lysine) are conserved in a macromolecular form within the vacuolar system. The mechanism(s) by which the uptake of infectious nucleic acids and the induction of interferon by dsRNA are stimulated by polycations are discussed.


1969 ◽  
Vol 17 (7) ◽  
pp. 454-466 ◽  
Author(s):  
EDWARD ESSNER

The peroxidase activity of microbodies in fetal mouse liver was studied by light and electron microscopy. Two types of microbodies were present; a small population of bodies that lacked a nucleoid, predominant on the 16th day of gestation, and a larger population of nucleoid-bearing microbodies, predominant on the 19th day, in association with the rough endoplasmic reticulum from which they probably originate. Both types of bodies were visualized when incubated for peroxidase activity but were negative (19th day) for acid phosphatase activity. The findings suggest that the anucleoid- and nucleoid-bearing organelles together constitute the microbody population of the fetal liver.


1978 ◽  
Vol 56 (11) ◽  
pp. 2299-2311 ◽  
Author(s):  
G. M. Jones ◽  
A. S. M. Saleuddin

The periostracum comprises an external lamella, 13 nm thick, and one sublamellar layer. Periostracal cells secrete the lamella as preformed periostracal units. The mantle edge gland (meg) produces most of the sublamellar layer. A sequence of formation of periostracal units within the periostracal cells is suggested. Homogeneous inclusions, possibly Golgi derived, fuse into larger, irregular inclusions. Within these inclusions, three-layered membranes, 7 nm thick, arise from the homogeneous material. The membranes fuse in pairs to form the five-layered, 13-nm periostracal units. Acid phosphatase activity has been localised al the surfaces of the periostracal units and might be involved in modifying the units prior to their discharge. Phenoloxidase and polyphenols have been localised in the meg, suggesting that this region is responsible for periostracal sclerotisation. Phenoloxidase activity is present in Golgi, rough endoplasmic reticulum, and apical secretory inclusions in cells in the anterior two-thirds of the meg. Polyphenols are present in apical secretory inclusions, particulary in three or four cells in the posterior meg. This distribution may suggest that phenoloxidase is incorporated into all levels of the sublamellar layer and that sclerotisation occurs subsequently when the enzyme substrate is presented.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1969 ◽  
Vol 17 (1) ◽  
pp. 1-22 ◽  
Author(s):  
R. E. SMITH ◽  
WILLIAM H. FISHMAN

Diazotized acetoxymercuric aniline in a postcoupling procedure for β-glucuronidase and acid phosphatase using naphthol AS-BI β-d-glucosiduronic acid and naphthol AS-BI-phosphoric acid respectively as substrates has yielded excellent 2-µ sections from Araldite-embedded specimens for light microscopy and correlating electron micrographs for both enzymes. The reaction of the red pigment product with thiocarbohydrazide is believed to establish a mercury-sulfur linkage which is apparently responsible for the pigment's surviving ethanol dehydration and epoxy embedding. Osmication of the tissue before dehydration appears to increase electron density of the product apparently by either chelation to the pigment product, by reduction of osmium tetroxide or by its decomposition with mercuric sulfide. The two acid hydrolases have been demonstrated within the cisternae of the Golgi and the endoplasmic reticulum and within the nuclear envelope of parenchymal cells of mouse and rat liver. Intracytoplasmic lipid inclusions in the livers of both C57 and C3H starved mice have shown a deposition of reaction product for acid phosphatase, whereas only C57 starved mice have shown a deposition of reaction product for β-glucuronidase. Lipid droplets in the rat preputial gland were sites high for β-glucuronidase, as has previously been demonstrated by two dissimilar techniques. Particularly helpful in evaluating the results of electron microscopy has been the use of physiologic controls as, for example, by comparison of findings made with the "high" tissue β-glucuronidase strain, C57, versus those of the "low" tissue β-glucuronidase strain, C3H. Localization of electron-dense product in lysosomes was clear, but not all of this can be attributed unequivocally to enzyme-produced density. The limitations of the technique and the question of nonspecific uptake of diazotized mercuric aniline are discussed. The findings for both hydrolases support the concept of the dual localization of acid hydrolases in lysosomes and in endoplasmic reticulum.


1980 ◽  
Vol 41 (1) ◽  
pp. 209-231
Author(s):  
L. Pellegrini

Physodes have been recognized in meristodermic and promeristematic cells by correlated light- and electron-microscope investigations using different fixation procedures. They are vesicles which contain an osmiophilic material of phenolic nature. Their content changes in appearence according to the fixative used. Osmiophilic deposits are often associated with coiled and disturbed lamellar formations. It has been possible to distinguish several ultrastructural stages which occur during the secretion of the content of the physodes, namely: a chloroplast accumulation and exudation, and a reticular transport to accumulation vacuoles where materials undergo evolution or hydrolysis. Inside plastids, osmiophilic granules are found in close association with thylakoid stacks. They may contain the polyphenolic precursors of physodes, though this has not yet been proved by electron-microscopy procedures. They are expelled from plastids to the chloroplast endoplasmic reticulum. The mechanism of transfer through the chloroplast envelope endoplasmic reticulum. The mechanism of transfer through the chloroplast envelope remains to be elucidated. Lytic activities have been reported inside physodes which might thus act in the same way as the secondary lysosomes of animals and higher plants. Occasionally, the physode content seems to be excreted from the cytoplasm to the cell walls by exocytosis after the probable fusion of plasmalemma and tonoplast. These cytological changes, observed in the vegetative apex of a brown alga, recall some ultrastructural characteristics of the secretory processes described in various glandular tissues of higher plants and which consist of the synthesis, the transport and the elimination of an exudate of flavonic, terpenic or lipophenolic nature.


1990 ◽  
Vol 57 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Kristina Dahlborn ◽  
Jamal Hossaini Hilali ◽  
Heriberto Rodriguez-Martinez

SummaryLactating goats were subjected to dehydration and to infusions of arginine vasopressin (AVP). Dehydration decreased milk production significantly but no changes were observed on the day of AVP infusion. The levels of AVP in plasma reached the same magnitude during both experimental procedures. AVP-immunoreactivity was immunocytochemically detected by light (peroxidase-antiperoxidase technique) and electron microscopy (immuno-Au technique on to glutaraldehyde-fixed, resin-embedded sections) in the mammary gland but not in the control experiments. In addition the cisternae of the rough endoplasmic reticulum in the secretory alveolar cells underwent significant swelling in response to the experimental procedures.


Sign in / Sign up

Export Citation Format

Share Document