scholarly journals Recognition of viral glycoproteins by influenza A-specific cross-reactive cytolytic T lymphocytes.

1980 ◽  
Vol 151 (4) ◽  
pp. 945-958 ◽  
Author(s):  
U H Koszinowski ◽  
H Allen ◽  
M J Gething ◽  
M D Waterfield ◽  
H D Klenk

Two populations of cytolytic T lymphocytes (CTL) generated after influenza A virus infection can be distinguished into one with specificity for the sensitizing hemagglutinin type and a second with cross-reactivity for antigens induced by other type-A influenza viruses. The molecules carrying the antigenic determinants recognized by the cross-reactive CTL were studied. In L-929 cells abortively infected with fowl plague virus, matrix (M) protein synthesis is specifically inhibited, whereas the envelope glycoproteins, hemagglutinin and neuraminidase, are synthesized and incorporated into the plasma membrane. These target cells were lysed by cross-reactive CTL. The envelope proteins of type A/Victoria virus were separated from the other virion components and reconstituted into lipid vesicles that lacked M protein that subsequently were used to prepare artificial target cells. Target-cell formation with vesicles was achieved by addition of fusion-active Sendai virus. These artificial target cells were also susceptible to lysis by cross-reactive CTL. In contrast to previous observations that suggested that the M protein of influenza viruses is recognized by these effector cells, we present evidence that the antigencic determinants induced by the viral glycoproteins are recognized.

1982 ◽  
Vol 156 (6) ◽  
pp. 1711-1722 ◽  
Author(s):  
H R MacDonald ◽  
A L Glasebrook ◽  
J C Cerottini

While it is well established that murine cytolytic T lymphocytes (CTL) express the Lyt-2/3 molecular complex on their surface, conflicting results have been reported concerning the role of this complex in CTL activity. In the present study this question was reinvestigated at the clonal level. Although different (H-2b anti-H-2d) CTL clones expressed comparable amounts of Lyt-2/3 molecules, as assessed by quantitative flow microfluorometry, the activity of some clones was inhibited by low doses (10 ng) of monoclonal anti-Lyt-2 or anti-Lyt-3 antibodies (in the absence of complement), whereas other clones were not inhibited by either antibody at doses as high as 5 microgram. Treatment of these clones with doses of trypsin sufficient to cleave Lyt-2/3 antigenic determinants from the cell surface resulted in a similar dissociation: clones that were inhibited by antibodies lost cytolytic activity, whereas "uninhibited" clones were unaffected by trypsin treatment. Moreover, the dissociation observed among different alloreactive clones could be demonstrated with self-H-2-restricted (H-2b anti-MSV) clones exhibiting cross-reactivity with normal H-2d products. The lytic activity of these clones against the relevant syngeneic target cells was unaffected by anti-Lyt-2 antibodies or trypsin, whereas their cross-reactivity on H-2d target cells was abolished by either treatment. These results provide direct evidence for clonal heterogeneity in the requirement for Lyt-2/3 molecules in CTL-mediated lysis. It is proposed that the function of Lyt-2/3 molecules is to stabilize the interaction between CTL receptors and the corresponding antigens on the target cells and that the requirement for such a stabilization is correlated with low number and/or affinity of CTL receptors.


2010 ◽  
Vol 84 (13) ◽  
pp. 6527-6535 ◽  
Author(s):  
Wenwei Tu ◽  
Huawei Mao ◽  
Jian Zheng ◽  
Yinping Liu ◽  
Susan S. Chiu ◽  
...  

ABSTRACT While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Using influenza A virus matrix protein 1 (M158-66) epitope-specific CTLs isolated from healthy HLA-A2+ individuals, we further found that M158-66 epitope-specific CTLs efficiently killed both M158-66 peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M158-66-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M158-66 epitope-specific CTLs in 20% (4/20) of HLA-A2+ individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.


1982 ◽  
Vol 155 (4) ◽  
pp. 1050-1062 ◽  
Author(s):  
F Plata

The specificities of cloned cytolytic T lymphocytes (CTL) were studied for the analysis of CTL populations generated against murine leukemia viruses (MuLV) in H-2 congenic BALB/c (H-2d) and BALB.B (H-2b) mice. In particular, CTL generated in response to tumors induced by Gross MuLV and Friend MuLV were studied; these tumors expressed virus-induced antigens that do not cross-react and that can be distinguished from each other. The systematic study of 92 CTL clones clearly indicated that MuLV-immune CTL were highly heterogeneous with respect to both the intensities of target cell lysis that they mediated and to their specificity of recognition of MuLV-induced tumor target cells. Various categories of CTL clones were identified, ranging from CTL clones tht were tightly H-2 restricted and specific for the immunizing tumor to CTL clones that displayed no discernible patterns of specificity and that attacked a large number of different target cells. In addition, the surface markers of these cloned CTL were defined, and the best conditions for their prolonged maintenance in culture were determined. The present data indicate that future efforts in the definition of target antigens recognized by tumor-specific CTL should be performed with monoclonal lymphocytes.


1978 ◽  
Vol 85 (5) ◽  
pp. 611-616
Author(s):  
S. N. Bykovskaya ◽  
M. O. Raushenbakh ◽  
A. N. Rytenko ◽  
A. F. Bykovskii

1980 ◽  
Vol 29 (2) ◽  
pp. 719-723 ◽  
Author(s):  
C S Reiss ◽  
J L Schulman

M protein of influenza A virus was detected with rabbit antiserum by both indirect immunofluorescence and by antibody plus complement-mediated cytolysis on the cell surfaces of both productively and nonproductively infected cells. In contrast, antiserum to nucleoprotein failed to react with unfixed infected cells, but did bind to fixed infected cells, especially in the perinuclear area. Incorporation of antiserum to M protein in a T-cell-mediated cytotoxicity assay produced almost complete abrogation of lysis of H-2-compatible cells infected with an influenza A virus of a subtype which differed from that used to elicit the cytotoxic T cells. However, the antibody did not significantly block 51Cr release from cells infected with the homotypic type A influenza virus. These observations are in accord with the hypothesis that the cross-reactive cytotoxic T-cell responses seen with cells infected by heterotypic influenza A viruses are due to recognition of a common M protein.


1978 ◽  
Vol 148 (6) ◽  
pp. 1458-1467 ◽  
Author(s):  
A McMichael

Cytotoxic T lymphocytes (CTL), specific for influenza A/X31 virus, were generated from human peripheral blood lymphocytes. These CTL lysed target cells that were infected with the same virus and that shared HLA A or B locus antigens. Minimal lysis was observed when HLA-D antigens were shared. Not all HLA A and B antigens were equally effective. Efficient lysis of target cells was seen when HLA A1, A3, B7, B8, B27 and BW21 were shared with the CTL, but when HLA A2 was the only shared antigen lysis was usually minimal. This deficiency in CTL function associated with HLA A2 was not absolute. It is suggested that the function of this antigen might be influenced by other surface molecules on the cell and in particular the other HLA products.


1979 ◽  
Vol 150 (1) ◽  
pp. 196-201 ◽  
Author(s):  
H R MacDonald ◽  
R K Less

The requirement for DNA synthesis during the primary differentiation of cytolytic T lymphocytes (CTL) had been investigated. CTL were induced polyclonally in vitro by stimulation of normal C57BL/6 spleen cells with concanavalin A (Con A)and their cytolytic activity was tested against 51Cr-labeled target cells in the presence of Bacto Phytohemagglutinin M. With this system, CTL activity could first be detected 48 h after exposure of spleen cells to Con A. Addition of cytosine arabinoside at concentrations sufficient to reduce DNA synthesis by 95-98% in Con A-stimulated cultures did not significantly inhibit the generation of cytolytic activity on a cell-to-cell basis. These results demonstrate that derepression of the genetic information required for the expression of CTL function can occur in the absence of detectable DNA synthesis.


2006 ◽  
Vol 80 (12) ◽  
pp. 6024-6032 ◽  
Author(s):  
Adrianus C. M. Boon ◽  
Gerrie de Mutsert ◽  
Ron A. M. Fouchier ◽  
Albert D. M. E. Osterhaus ◽  
Guus F. Rimmelzwaan

ABSTRACT Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP418-426 epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP418-426-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.


1977 ◽  
Vol 146 (3) ◽  
pp. 690-697 ◽  
Author(s):  
W E Biddison ◽  
P C Doherty ◽  
R G Webster

Antisera to the type-specific internal influenza virus matrix (M) protein of a type A influenza virus were produced in goats. In the presence of complement, anti-M serum was cytotoxic for target cells which were infected with a variety of serologically distinct type A influenza viruses, but did not react with type B influenza virus-infected cells. Absorption experiments indicated that anti-M serum detected a common antigen(s) on the surface of type A-infected cells. This serological cross-reactivity parallels the cross-reactivity observed for the cytotoxic T-cell response to type A viruses.


2018 ◽  
Vol 92 (11) ◽  
pp. e00232-18 ◽  
Author(s):  
Carolien E. van de Sandt ◽  
Mark R. Pronk ◽  
Carel A. van Baalen ◽  
Ron A. M. Fouchier ◽  
Guus F. Rimmelzwaan

ABSTRACT Influenza virus-specific CD8+ T lymphocytes (CTLs) contribute to clearance of influenza virus infections and reduce disease severity. Variation at amino acid residues located in or outside CTL epitopes has been shown to affect viral recognition by virus-specific CTLs. In the present study, we investigated the effect of naturally occurring variation at residues outside the conserved immunodominant and HLA*0201-restricted M158-66 epitope, located in the influenza virus M1 protein, on the extent of virus replication in the presence of CTLs specific for the epitope. To this end, we used isogenic viruses with an M1 gene segment derived from either an avian or a human influenza virus, HLA-transgenic human epithelial cells, human T cell clones specific for the M158-66 epitope or a control epitope, and a novel, purposely developed in vitro system to coculture influenza virus-infected cells with T cells. We found that the M gene segment of a human influenza A/H3N2 virus afforded the virus the capacity to replicate better in the presence of M158-66-specific CTLs than the M gene segment of avian viruses. These findings are in concordance with previously observed differential CTL activation, caused by variation at extra-epitopic residues, and may reflect an immune adaptation strategy of human influenza viruses that allows them to cope with potent CTL immunity to the M158-66 epitope in HLA-A*0201-positive individuals, resulting in increased virus replication and shedding and possibly increasing disease severity. IMPORTANCE Influenza viruses are among the leading causes of acute respiratory tract infections. CD8+ T lymphocytes display a high degree of cross-reactivity with influenza A viruses of various subtypes and are considered an important correlate of protection. Unraveling viral immune evasion strategies and identifying signs of immune adaptation are important for defining the role of CD8+ T lymphocytes in affording protection more accurately. Improving our insight into the interaction between influenza viruses and virus-specific CD8+ T lymphocyte immunity may help to advance our understanding of influenza virus epidemiology, aid in risk assessment of potentially pandemic influenza virus strains, and benefit the design of vaccines that induce more broadly protective immunity.


Sign in / Sign up

Export Citation Format

Share Document