scholarly journals Specificity studies on cytolytic T lymphocytes directed against murine leukemia virus-induced tumors. Analysis of monoclonal cytolytic T lymphocytes.

1982 ◽  
Vol 155 (4) ◽  
pp. 1050-1062 ◽  
Author(s):  
F Plata

The specificities of cloned cytolytic T lymphocytes (CTL) were studied for the analysis of CTL populations generated against murine leukemia viruses (MuLV) in H-2 congenic BALB/c (H-2d) and BALB.B (H-2b) mice. In particular, CTL generated in response to tumors induced by Gross MuLV and Friend MuLV were studied; these tumors expressed virus-induced antigens that do not cross-react and that can be distinguished from each other. The systematic study of 92 CTL clones clearly indicated that MuLV-immune CTL were highly heterogeneous with respect to both the intensities of target cell lysis that they mediated and to their specificity of recognition of MuLV-induced tumor target cells. Various categories of CTL clones were identified, ranging from CTL clones tht were tightly H-2 restricted and specific for the immunizing tumor to CTL clones that displayed no discernible patterns of specificity and that attacked a large number of different target cells. In addition, the surface markers of these cloned CTL were defined, and the best conditions for their prolonged maintenance in culture were determined. The present data indicate that future efforts in the definition of target antigens recognized by tumor-specific CTL should be performed with monoclonal lymphocytes.

1981 ◽  
Vol 154 (6) ◽  
pp. 1795-1810 ◽  
Author(s):  
F Plata ◽  
A F Tilkin ◽  
J P Lévy ◽  
F Lilly

Comparative quantitative experiments were designed to study the expression of H-2Kd and H-2Dd antigens on three different leukemia cell lines induced by Gross murine leukemia virus (MuLV)in BALB/c (H-2d) mice. The H-2 restriction patterns of syngeneic cytolytic T lymphocytes (CTL) directed against Gross MuLV-induced tumors were correlated with these quantitations of H-2Kd and H-2Dd antigens, Our results obtained by quantitative absorption of monospecific antisera indicated that the three BALB/c tumor cell lines expressed different amounts of H-2Kd and H-2Dd antigens, with H-2Dd antigen showing the greatest variability in expression because it ranged from barely detectable levels to one-eighth the amount of H-2Dd antigen expressed on normal BALB/c spleen cells. The H-2 restriction patterns of Gross MuLV-specific CTL were directly affected by these quantitative modulations in the expression of H-2Kd and H-2Dd antigens, as revealed by three independent approaches: (a) inhibition of CTL activity by monospecific anti-H-2 sera in the absence of complement; (b)competitive inhibition of CTL-mediated cytotoxicity by the addition of excess tumor cells into the reaction mixture; and (c) analysis of CTL specificities using cloned CTL populations. Our results thus indicate that H-2 restriction of tumor-specific CTL activity can be directed at the target cell level by variations in the expression of H-2 antigens.


Author(s):  
L. Z. de Tkaczevski ◽  
E. de Harven ◽  
C. Friend

Despite extensive studies, the correlation between the morphology and pathogenicity of murine leukemia viruses (MLV) has not yet been clarified. The virus particles found in the plasma of leukemic mice belong to 2 distinct groups, 1 or 2% of them being enveloped A particles and the vast majority being of type C. It is generally believed that these 2 types of particles represent different phases in the development of the same virus. Particles of type A have been thought to be an earlier form of type C particles. One of the tissue culture lines established from Friend leukemia solid tumors has provided the material for the present study. The supernatant fluid of the line designated C-1A contains an almost pure population of A particles as illustrated in Figure 1. The ratio is, therefore, the reverse of what is unvariably observed in the plasma of leukemic mice where C particles predominate.


2004 ◽  
Vol 78 (23) ◽  
pp. 13216-13231 ◽  
Author(s):  
Karina Dalsgaard Sørensen ◽  
Leticia Quintanilla-Martinez ◽  
Sandra Kunder ◽  
Jörg Schmidt ◽  
Finn Skou Pedersen

ABSTRACT SL3-3 murine leukemia virus is a potent inducer of T-lymphomas in mice. Using inbred NMRI mice, it was previously reported that a mutant of SL3-3 with all enhancer Runx (AML1/core) sites disrupted by 3-bp mutations (SL3-3dm) induces predominantly non-T-cell tumors with severely extended latency (S. Ethelberg, J. Lovmand, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:7273-7280, 1997). By use of three-color flow cytometry and molecular and histopathological analyses, we have now performed a detailed phenotypic characterization of SL3-3- and SL3-3dm-induced tumors in this mouse strain. All wild-type induced tumors had clonal T-cell receptor β rearrangements, and the vast majority were CD3+ CD4+ CD8− T-lymphomas. Such a consistent phenotypic pattern is unusual for murine leukemia virus-induced T-lymphomas. The mutant virus induced malignancies of four distinct hematopoietic lineages: myeloid, T lymphoid, B lymphoid, and erythroid. The most common disease was myeloid leukemia with maturation. Thus, mutation of all Runx motifs in the enhancer of SL3-3 severely impedes viral T-lymphomagenicity and thereby discloses a considerable and formerly unappreciated potential of this virus for myeloid leukemia induction. Proviral enhancers with complex structural alterations (deletions, insertions, and/or duplications) were found in most SL3-3dm-induced T-lymphoid tumors and immature myeloid leukemias but not in any cases of myeloid leukemia with maturation, mature B-lymphoma, or erythroleukemia. Altogether, our results indicate that the SL3-3dm enhancer in itself promotes induction of myeloid leukemia with maturation but that structural changes may arise in vivo and redirect viral disease specificity to induction of T-lymphoid or immature myeloid leukemias, which typically develop with moderately shorter latencies.


2003 ◽  
Vol 77 (5) ◽  
pp. 3345-3350 ◽  
Author(s):  
Marie-Noëlle Brunelle ◽  
Léa Brakier-Gingras ◽  
Guy Lemay

ABSTRACT Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model.


1991 ◽  
Vol 174 (2) ◽  
pp. 389-396 ◽  
Author(s):  
B K Brightman ◽  
Q X Li ◽  
D J Trepp ◽  
H Fan

Neonatal CxD2 (Rmcfr) and Balb/c (Rmcfs) mice inoculated with Moloney murine leukemia virus (M-MuLV) exhibited approximately equivalent time course and pathology for disease. CxD2 mice showed only slightly reduced presence of Moloney mink cell focus-forming virus (M-MCF) provirus as seen by Southern blot analysis compared to Balb/c mice. This lack of restriction for disease and spread of MCF was in sharp contrast to that seen for CxD2 mice inoculated with Friend murine leukemia virus (F-MuLV), where incidence of disease and propagation of MCFs were severely restricted, as previously reported. Inoculation of CxD2 mice with FM-MuLV, a recombinant F-MuLV virus containing M-MuLV LTR sequences (U3 and R), resulted in T cell disease of time course equal to that seen in Balb/c mice; there also was little restriction for propagation of MCFs. This indicated that presence of the M-MuLV long terminal repeat (LTR) was sufficient for propagation of MCFs in CxD2 mice. Differing restriction for F-MuLV vs. M-MuLV in CxD2 mice was explained on the basis of different "MCF propagator cells" for the two viruses. It was suggested that cells propagating F-MCF (e.g., erythroid progenitors) are blocked by endogenous MCF-like gp70env protein, whereas cells propagating M-MCF (e.g., lymphoid) do not express this protein on their surface. F-MuLV disease in CxD2 mice was greatly accelerated when neonates were inoculated with a F-MuLV/F-MCF pseudotypic mixture. However, F-MCF provirus was not detectable or only barely detectable in F-MuLV/F-MCF-induced tumors, suggesting that F-MCF acted indirectly in induction of these tumors.


2003 ◽  
Vol 77 (1) ◽  
pp. 739-743 ◽  
Author(s):  
Chi-Wei Lu ◽  
Lucille O'Reilly ◽  
Monica J. Roth

ABSTRACT Passage of 4070A murine leukemia virus (MuLV) in D17 cells resulted in a G-to-R change at position 100 within the VRA of the envelope protein (Env). Compared with 4070A MuLV, virus with the G100R Env displayed enhanced binding on target cells, internalized the virus more rapidly, and increased the overall viral titer in multiple cell types. This provides a direct correlation between binding strength and efficiency of viral entry. Deletion of a His residue at the SU N terminus eliminated the transduction efficiency by the G100R virus, suggesting that the G100R virus maintains the regulatory characteristics of 4070A viral entry. The improved transduction efficiency of G100R Env would be an asset for gene delivery systems.


Sign in / Sign up

Export Citation Format

Share Document