scholarly journals Self recognition in allogeneic thymic chimeras. Self recognition by T helper cells from thymus-engrafted nude mice is restricted to the thymic H-2 haplotype.

1982 ◽  
Vol 155 (1) ◽  
pp. 339-344 ◽  
Author(s):  
A Singer ◽  
K S Hathcock ◽  
R J Hodes

To examine the possibility that the thymus determines the I region-restricted self-recognition repertoire expressed by T helper (TH) cells, thymic chimeras were constructed by transplanting allogeneic neonatal thymic lobes into congenitally athymic nude mice. Spleen TH cells from the thymic chimeras were themselves of nude host origin but only cooperated with B+ accessory cells of the thymic haplotype for primary in vitro responses to sheep erythrocytes and trinitrophenyl conjugate of keyhole limpet hemocyanin. Thus, these experiments demonstrate that the self-recognition repertoire expressed by TH cells is determined by the H-2 phenotype of the intrathymic environment in which the TH cells had differentiated.

1981 ◽  
Vol 153 (5) ◽  
pp. 1286-1301 ◽  
Author(s):  
A Singer ◽  
KS Hathcock ◽  
RJ Hodes

The specificity of the self-recognition repertoire in fully allogeneic (A {arrow} B), semiallogeneic (A {arrow} A x B and A x B {arrow} A), and double donor (A + B {arrow} A) radiation bone marrow chimeras was assessed by the ability of their spleen cells to generate in vitro primary plaque-forming cell (PFC) responses to trinitrophenyl- keyhole limpet hemocyanin. In contrast to spleen cells from semiallogeneic and double donor chimeras, intact spleen cells from fully allogeneic BI0 {arrow} B10.A and B10.A {arrow} B10 chimeras were not capable of generating responses to trinitrophenyl (TNP)-keyhole limpet hemocyanin. However, cultures containing a mixture of both B10 {arrow} B10.A and B10.A {arrow} B10 spleen cells did respond, demonstrating that all the cell populations required for the in vitro generation of T-dependent PFC responses were able to differentiate into functional competence in a fully allogeneic major histocompatibility complex (MHC) environment. The self recognition repertoire of T-helper cells from fully allogeneic A {arrow} B chimeras was determined to be specific for the recognition of host, not donor, MHC determinants in that they were able to collaborate with cells expressing only host MHC determinants but not with cells expressing only donor MHC determinants, even though the functional lymphocytes in these chimeras were shown to be of donor origin. Experiments utilizing double donor A + B {arrow} A chimeras further demonstrated that the ability of chimeric T cells to recognize allogeneic MHC determinants as self structures was a function of a radiation-resistant host element and not simply a consequence of the tolerization of T cell precursors to allogeneic MHC determinants, because strain A lymphocytes isolated from A + B {arrow} A chimeras were tolerant to both A and B MHC determinants but were restricted to the self recognition of syngeneic host type A MHC determinants. Finally, the Ir gene phenotype expressed by B10 {arrow} B10.A and B10.A {arrow} B10 chimeric lymphocytes was determined by their ability to function in the Ir gene controlled response to TNP-poly-L-(Tyr,Glu)-poly-D,L-Ala-poly- L-Lys [(T,G)-A--L]. The ability of lymphocytes to function in TNP-(T,G)-A--L responses was not determined by their genotype but rather paralleled the specificity of their self recognition repertoire for high responder (H-2 (b)) determinants. The possible degeneracy of the MHC-specific self recognition repertoire is discussed, and a model is proposed for Ir gene regulation in which expression of Ir gene function by lymphocytes is an antigen-nonspecific consequence of the specificity and cross-reactivity of their self recognition repertoire.


2021 ◽  
Vol 22 (11) ◽  
pp. 5660
Author(s):  
Cindy Hoeks ◽  
Marjan Vanheusden ◽  
Liesbet M. Peeters ◽  
Piet Stinissen ◽  
Bieke Broux ◽  
...  

Cytotoxic CD4+ T cells (CD4 CTL) are terminally differentiated T helper cells that contribute to autoimmune diseases, such as multiple sclerosis. We developed a novel triple co-culture transwell assay to study mutual interactions between CD4 CTL, conventional TH cells, and regulatory T cells (Tregs) simultaneously. We show that, while CD4 CTL are resistant to suppression by Tregs in vitro, the conditioned medium of CD4 CTL accentuates the suppressive phenotype of Tregs by upregulating IL-10, Granzyme B, CTLA-4, and PD-1. We demonstrate that CD4 CTL conditioned medium skews memory TH cells to a TH17 phenotype, suggesting that the CD4 CTL induce bystander polarization. In our triple co-culture assay, the CD4 CTL secretome promotes the proliferation of TH cells, even in the presence of Tregs. However, when cell−cell contact is established between CD4 CTL and TH cells, the proliferation of TH cells is no longer increased and Treg-mediated suppression is restored. Taken together, our results suggest that when TH cells acquire cytotoxic properties, these Treg-resistant CD4 CTL affect the proliferation and phenotype of conventional TH cells in their vicinity. By creating such a pro-inflammatory microenvironment, CD4 CTL may favor their own persistence and expansion, and that of other potentially pathogenic TH cells, thereby contributing to pathogenic responses in autoimmune disorders.


1982 ◽  
Vol 155 (1) ◽  
pp. 190-200 ◽  
Author(s):  
G G Miller ◽  
P I Nadler ◽  
R J Hodes ◽  
D H Sachs

Immunization of BALB/c mice with nuclease leads to the production of anti-nuclease antibodies bearing a set of cross-reactive idiotypes (Id) distinct from those produced by B10.D2 mice after similar immunization. In both strains, such immunization with nuclease also leads to the production of splenic T helper cells (TH), which provide nuclease-specific help in an in vitro plaque-forming cell response to nuclease-TNP. Pig anti-(BALB/c antinuclease) anti-idiotypic antibodies (pig anti-BALB/c Id) react only with TH of nuclease-primed BALB/c and not with B10.D2 animals. After administration of pig anti-BALB/c Id in complete Freund's adjuvant to BALB/c and B10.D2 mice, Id-bearing nonantigen-binding molecules were induced in both strains. Such treatment also resulted in the induction of nuclease-specific splenic TH cells in both strains. BALB/c TH cells induced by anti-Id, like the majority of nuclease-primed BALB/c TH cells, bore BALB/c Id, as shown by their functional elimination with anti-Id plus complement. B10.D2 TH cells induced by anti-Id, unlike TH cells from nuclease-primed B10.D2 mice, also bore BALB/c idiotypic determinants by the same criterion. Thus, it appears that one can manipulate the expression of Id on serum immunoglobulins and on antigen-specific TH cells by administration of exogenous anti-Id reagents. These results have implications both for network interactions in the immune response and for the genetic basis of Igh-C linked Id expression.


2019 ◽  
Author(s):  
S Ehrlich ◽  
K Wild ◽  
M Smits ◽  
K Zoldan ◽  
M Hofmann ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Michaela Gasch ◽  
Tina Goroll ◽  
Mario Bauer ◽  
Denise Hinz ◽  
Nicole Schütze ◽  
...  

The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells underin vitroconditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR) has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.


1983 ◽  
Vol 158 (4) ◽  
pp. 1178-1190 ◽  
Author(s):  
Y Asano ◽  
R J Hodes

The present studies have identified cloned Lyt-1+2- T suppressor (Ts) cells that are both antigen specific and major histocompatibility complex (MHC) restricted in their activation requirements and that function to regulate the MHC-restricted activation of B cells by T helper (Th) cells. ParentA-restricted Ts clones suppressed, in antigen-specific fashion, the responses generated by (A X B)F1 Th cells cooperating with parentA (B plus accessory) cells, but did not suppress responses by the same (A X B)F1 Th cell population cooperating with parentB (B plus accessory) cells. Moreover, responses of (A X B)F1 leads to parentA Th cells and (A X B)F1 (B plus accessory) cells were suppressed by parentA-restricted Ts clones but not by parentB-restricted Ts clones. Thus, these findings suggest that the cloned Ts cells that have been characterized here function by specifically inhibiting the MHC-restricted interaction between Th cells and B and/or accessory cells. It was further demonstrated in experiments using cloned Th and Ts populations that these Lyt-1+2-Ts cells act not simply as inducers of suppressor but rather function in a restricted fashion as effector cells in the suppressor pathway.


mAbs ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1898831
Author(s):  
Sivan Cohen ◽  
Srividya Myneni ◽  
Anna Batt ◽  
Joyce Guerrero ◽  
Jochen Brumm ◽  
...  

1998 ◽  
Vol 188 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
Mark H. Kaplan ◽  
Andrea L. Wurster ◽  
Michael J. Grusby

The differentiation of T helper (Th) cells is regulated by members of the signal transducer and activator of transcription (STAT) family of signaling molecules. We have generated mice lacking both Stat4 and Stat6 to examine the ability of Th cells to develop in the absence of these two transcription factors. Stat4, Stat6−/− lymphocytes fail to differentiate into interleukin (IL)-4–secreting Th2 cells. However, in contrast to Stat4−/− lymphocytes, T cells from Stat4, Stat6−/− mice produce significant amounts of interferon (IFN)-γ when activated in vitro. Although Stat4, Stat6−/− lymphocytes produce less IFN-γ than IL-12–stimulated control lymphocytes, equivalent numbers of IFN-γ–secreting cells can be generated from cultures of Stat4, Stat6−/− lymphocytes activated under neutral conditions and control lymphocytes activated under Th1 cell–promoting conditions. Moreover, Stat4, Stat6−/− mice are able to mount an in vivo Th1 cell–mediated delayed-type hypersensitivity response. These results support a model of Th cell differentiation in which the generation of Th2 cells requires Stat6, whereas a Stat4-independent pathway exists for the development of Th1 cells.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii3-ii3
Author(s):  
Y Chih ◽  
K Sahm ◽  
A Sadik ◽  
T Bunse ◽  
N Trautwein ◽  
...  

Abstract BACKGROUND Neoepitopes are presented on major histocompatibility class II (MHCII) molecules. In glioma, for instance, the recurrent driver mutation IDH1R132H was shown to bear an MHCII-restricted epitope in preclinical and clinical vaccine studies. The general relevance of MHCII expression in glioma for antitumor immunity, however, remains unknown. Here we evaluate stromal and tumoral MHCII expression, functionality, and its association with survival in gliomas. MATERIAL AND METHODS Immunostaining of human glioma tissues was used to identify tumoral, endothelial, and microglial MHCII expression and to enumerate T cell infiltrates. To gain insights into tumoral MHCII expression, bulk transcriptomic data from TCGA and single-cell transcriptomic data from publicly available datasets were analyzed. MHC ligandome analyses of an MHCII+ glioma cell line and human glioma tissues were used to determine the functionality of MHCII in vitro and ex vivo. Functional in vitro co-culture assays with an HLA-DR-matched tetanus toxoid (TT) epitope-overexpressing glioma cell line and in vitro-expanded TT-reactive T cells from healthy donors were used to examine direct target recognition by T helper cells. CRISPR-Cas9-mediated knockout of MHCII in preclinical hypermutant glioblastoma cell line GL261 was employed to further validate the consequences of tumoral MHCII expression and to probe potential clinical intervention with existing therapies. RESULTS MHCII is expressed in the majority of gliomas and associated with increased infiltration of T cells. In 10% of the analyzed glioma tissues and a subset of single cells, tumoral MHCII expression is detected. Clinical and transcriptomic data reveal that tumoral MHCII is associated with poor prognosis, cytokine responses, immune inhibition and T cell differentiation. Ligandome analyses evidence presentation of peptides by MHCII molecules on glioma cells. In in vitro assays, TT-reactive T helper cells specifically produce IFNg when co-cultured with MHCII+ glioma cells upon the presence of co-stimulation. In agreement with the clinical data, preclinical murine models demonstrate that tumoral MHCII expression leads to reduced survival. Co-culture assay shows that tumoral MHCII results in upregulation of PD-1 on T helper cells antigen-specifically. Concordantly, immune checkpoint blockade (ICB) therapy slows the disease progression of mice carrying MHCII+ tumors. CONCLUSION MHCII is expressed in gliomas by a subset of tumor cells. Although tumoral MHCII is functional, it is associated with poor survival in both clinical data and preclinical models. T cell exhaustion induced by tumoral MHCII expression can, in part, be overcome by ICB in vivo. Further experiments are required to decipher tumor cell intrinsic and microenvironmental consequences of tumoral MHCII expression.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1115-1123 ◽  
Author(s):  
T Decker ◽  
T Flohr ◽  
P Trautmann ◽  
MJ Aman ◽  
W Holter ◽  
...  

Abstract We investigated the production of cytokines by highly purified T helper cells from B-cell chronic lymphocytic leukemia (B-CLL) patients stimulated by different activation pathways, and we studied the influence of various accessory cell populations on the pattern of the secretion of cytokines, including interleukin (IL)-2, IL-4, interferon- gamma (IFN-gamma), and IL-10. Neither a qualitative nor a quantitative difference in cytokine production and proliferative capacity was observed in CLL-derived purified T cells compared with normal individuals, when T cells were stimulated by different pathways, including CD3, CD2, and costimulation with CD28. Addition of autologous accessory cells (aAC), however, dramatically influenced the cytokine pattern of normal versus B-CLL-derived T cells. CLL cells as aAC caused a marked increase of IL-2, whereas IFN-gamma was only slightly induced and IL-4 was not influenced. In contrast, in normal individuals addition of aAC, which predominantly consisted of monocytes, resulted in a significant increase of IFN-gamma and a reduction of IL-4 secretion. IL-2 production was inhibited by higher concentrations of aAC. The increased stimulation of IL-2 production by CLL cells was not specific to the leukemic cell population, as purified B cells from normal individuals had the same effect. On the other hand, purified monocytes from CLL patients and controls both induced IFN-gamma production and inhibited IL-4 secretion. After antigen-specific stimulation with tetanus toxoid, cytokine secretion was influenced by the type of aAC in a similar pattern. We conclude that T helper cells derived from patients with B-CLL are intrinsically normal and that the predominance of B cells as accessory cells in CLL significantly alters the immune function of T helper cells in vitro.


Sign in / Sign up

Export Citation Format

Share Document