scholarly journals Epstein-Barr virus susceptibility of normal human B lymphocyte populations.

1984 ◽  
Vol 159 (1) ◽  
pp. 208-220 ◽  
Author(s):  
P Aman ◽  
B Ehlin-Henriksson ◽  
G Klein

Human blood and tonsil B lymphocytes were fractionated on density gradients and tested for virus binding and penetration into the cells. Epstein-Barr Virus (EBV) transformation was detected by immunofluorescence staining for EBV-determined nuclear antigen (EBNA). EBV bound to and penetrated all B cell populations, but only the high density populations were transformed. Activated B lymphocytes were found in the low density fractions and these cells were resistant to EBV infection. Infected and noninfected B lymphocytes were density-analyzed during in vitro culture. A spontaneous, not virus-induced, density decrease was found to precede the production of EBNA. Cells remaining at high density never expressed EBNA. The results suggest that EBV can transform only small resting B lymphocytes and that a virus-independent activation of the infected cells induces the EBNA production and transformation.

Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517 ◽  
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

Abstract A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


2007 ◽  
Vol 81 (12) ◽  
pp. 6718-6730 ◽  
Author(s):  
Tathagata Choudhuri ◽  
Subhash C. Verma ◽  
Ke Lan ◽  
Masanao Murakami ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) infects most of the human population and persists in B lymphocytes for the lifetime of the host. The establishment of latent infection by EBV requires the expression of a unique repertoire of genes. The product of one of these viral genes, the EBV nuclear antigen 3C (EBNA3C), is essential for the growth transformation of primary B lymphocytes in vitro and can regulate the transcription of a number of viral and cellular genes important for the immortalization process. This study demonstrates an associated function of EBNA3C which involves the disruption of the G2/M cell cycle checkpoint. We show that EBNA3C-expressing lymphoblastoid cell lines treated with the drug nocodazole, which is known to block cells at the G2/M transition, did not show a G2/M-specific checkpoint arrest. Analyses of the cell cycles of cells expressing EBNA3C demonstrated that the expression of this essential EBV nuclear antigen is capable of releasing the G2/M checkpoint arrest induced by nocodazole. This G2/M arrest in response to nocodazole was also abolished by caffeine, suggesting an involvement of the ATM/ATR signaling pathway in the regulation of this cell cycle checkpoint. Importantly, we show that the direct interaction of EBNA3C with Chk2, the ATM/ATR signaling effector, is responsible for the release of this nocodazole-induced G2/M arrest and that this interaction leads to the serine 216 phosphorylation of Cdc25c, which is sequestered in the cytoplasm by 14-3-3. Overall, our data suggest that EBNA3C can directly regulate the G2/M component of the host cell cycle machinery, allowing for the release of the checkpoint block.


2001 ◽  
Vol 75 (18) ◽  
pp. 8556-8568 ◽  
Author(s):  
Wonkeun Lee ◽  
Yoon-Ha Hwang ◽  
Suk-Kyeong Lee ◽  
Chitra Subramanian ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.


2005 ◽  
Vol 86 (11) ◽  
pp. 3009-3019 ◽  
Author(s):  
Claire Shannon-Lowe ◽  
Gouri Baldwin ◽  
Regina Feederle ◽  
Andrew Bell ◽  
Alan Rickinson ◽  
...  

Epstein–Barr virus (EBV) infection and growth activation of human B cells is central to virus biology and disease pathogenesis, but is poorly understood in quantitative terms. Here, using virus at defined m.o.i., the different stages of this process at the single-cell level are followed in vitro. Virus binding to the B-cell surface, assayed by quantitative PCR, is highly efficient, particularly at the low m.o.i. values that most likely reflect physiologic events in vivo. However, only 10–15 % of bound virus genomes reach the cell nucleus, as visualized by sensitive fluorescence in situ hybridization (FISH) assay; viral genomes acquired per cell nucleus range from 1 to >10, depending on the m.o.i. Thereafter, despite differences in initial genome load, almost all nuclear genome-positive cells then go on to express the virus-encoded nuclear antigen EBNA2, upregulate the cell activation antigen CD23 and transit the cell cycle. EBNA2-positive cells in the first cycle post-infection then grow out to lymphoblastoid cell lines (LCLs) just as efficiently as do cells limiting-diluted from already established LCLs. This study therefore identifies EBV genome delivery to the nucleus as a key rate-limiting step in B-cell transformation, and highlights the remarkable efficiency with which a single virus genome, having reached the nucleus, then drives the transformation programme.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


2015 ◽  
Vol 90 (6) ◽  
pp. 2906-2919 ◽  
Author(s):  
Anqi Wang ◽  
Rene Welch ◽  
Bo Zhao ◽  
Tram Ta ◽  
Sündüz Keleş ◽  
...  

ABSTRACTLatent infection of B lymphocytes by Epstein-Barr virus (EBV)in vitroresults in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear. Our chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis of the EBNA3 proteins analyzed in concert with prior EBNA2 and RBPJ data demonstrated that EBNA3A, EBNA3B, and EBNA3C bind to distinct, partially overlapping genomic locations. Although RBPJ interaction is critical for EBNA3A and EBNA3C growth effects, only 30 to 40% of EBNA3-bound sites colocalize with RBPJ. Using LCLs conditional for EBNA3A or EBNA3C activity, we demonstrate that EBNA2 binding at sites near EBNA3A- or EBNA3C-regulated genes is specifically regulated by the respective EBNA3. To investigate EBNA3 binding specificity, we identified sequences and transcription factors enriched at EBNA3A-, EBNA3B-, and EBNA3C-bound sites. This confirmed the prior observation that IRF4 is enriched at EBNA3A- and EBNA3C-bound sites and revealed IRF4 enrichment at EBNA3B-bound sites. Using IRF4-negative BJAB cells, we demonstrate that IRF4 is essential for EBNA3C, but not EBNA3A or EBNA3B, binding to specific sites. These results support a model in which EBNA2 and EBNA3s compete for distinct subsets of RBPJ sites to regulate cell genes and where EBNA3 subset specificity is determined by interactions with other cell transcription factors.IMPORTANCEEpstein-Barr virus (EBV) latent gene products cause human cancers and transform B lymphocytes into immortalized lymphoblastoid cell linesin vitro. EBV nuclear antigens (EBNAs) and membrane proteins constitutively activate pathways important for lymphocyte growth and survival. An important unresolved question is how four different EBNAs (EBNA2, -3A, -3B, and -3C) exert unique effects via a single transcription factor, RBPJ. Here, we report that each EBNA binds to distinct but partially overlapping sets of genomic sites. EBNA3A and EBNA3C specifically regulate EBNA2's access to different RBPJ sites, providing a mechanism by which each EBNA can regulate distinct cell genes. We show that IRF4, an essential regulator of B cell differentiation, is critical for EBNA3C binding specificity; EBNA3A and EBNA3B specificities are likely due to interactions with other cell transcription factors. EBNA3 titration of EBNA2 transcriptional function at distinct sites likely limits cell defenses that would be triggered by unchecked EBNA2 prooncogenic activity.


1999 ◽  
Vol 73 (5) ◽  
pp. 4481-4484 ◽  
Author(s):  
Carmen Kaiser ◽  
Gerhard Laux ◽  
Dirk Eick ◽  
Nicola Jochner ◽  
Georg W. Bornkamm ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects and transforms primary B lymphocytes in vitro. Viral infection initiates the cell cycle entry of the resting B lymphocytes. The maintenance of proliferation in the infected cells is strictly dependent on functional EBNA2. We have recently developed a conditional immortalization system for EBV by rendering the function of EBNA2, and thus proliferation of the immortalized cells, dependent on estrogen. This cellular system was used to identify early events preceding induction of proliferation. We show that LMP1 and c-myc are directly activated by EBNA2, indicating that all cellular factors essential for induction of these genes by EBNA2 are present in the resting cells. In contrast, induction of the cell cycle regulators cyclin D2 and cdk4 are secondary events, which require de novo protein synthesis.


Virology ◽  
1979 ◽  
Vol 95 (1) ◽  
pp. 222-226 ◽  
Author(s):  
Tohru Kamata ◽  
Shigeaki Tanaka ◽  
Shogo Aikawa ◽  
Yorio Hinuma ◽  
Yasushi Watanabe

Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 3147-3159 ◽  
Author(s):  
F Pomponi ◽  
R Cariati ◽  
P Zancai ◽  
P De Paoli ◽  
S Rizzo ◽  
...  

Natural and synthetic retinoids have proved to be effective in the treatment and prevention of various human cancers. In the present study, we investigated the effect of retinoids on Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines (LCLs), since these cells closely resemble those that give rise to EBV-related lymphoproliferative disorders in the immunosuppressed host. All six compounds tested inhibited LCL proliferation with no significant direct cytotoxicity, but 9-cis-retinoic acid (RA), 13-cis-RA, and all-trans-RA (ATRA) were markedly more efficacious than Ro40–8757, Ro13–6298, and etretinate. The antiproliferative action of the three most effective compounds was confirmed in a large panel of LCLs, thus appearing as a generalized phenomenon in these cells. LCL growth was irreversibly inhibited even after 2 days of treatment at drug concentrations corresponding to therapeutically achievable plasma levels. Retinoid-treated cells showed a marked downregulation of CD71 and a decreased S-phase compartment with a parallel accumulation in Gzero/ G1 phases. These cell cycle perturbations were associated with the upregulation of p27 Kip1, a nuclear protein that controls entrance and progression through the cell cycle by inhibiting several cyclin/cyclin-dependent kinase complexes. Unlike what is observed in other systems, the antiproliferative effect exerted by retinoids on LCLs was not due to the acquisition of a terminally differentiated status. In fact, retinoid-induced modifications of cell morphology, phenotype (downregulation of CD19, HLA-DR, and s-Ig, and increased expression of CD38 and c-Ig), and IgM production were late events, highly heterogeneous, and often slightly relevant, being therefore only partially indicative of a drug-related differentiative process. Moreover, EBV-encoded EBV nuclear antigen-2 and latent membrane protein-1 proteins were inconstantly downregulated by retinoids, indicating that their growth-inhibitory effect is not mediated by a direct modulation of viral latent antigen expression. The strong antiproliferative activity exerted by retinoids in our experimental model indicates that these compounds may represent a useful tool in the medical management of EBV-related lymphoproliferative disorders of immunosuppressed patients.


2006 ◽  
Vol 87 (10) ◽  
pp. 2879-2884 ◽  
Author(s):  
Marion Buck ◽  
Anita Burgess ◽  
Roslynn Stirzaker ◽  
Kenia Krauer ◽  
Tom Sculley

The Epstein–Barr nuclear antigen 3A (EBNA3A) is one of only six viral proteins essential for Epstein–Barr virus-induced transformation of primary human B cells in vitro. Viral proteins such as EBNA3A are able to interact with cellular proteins, manipulating various biochemical and signalling pathways to initiate and maintain the transformed state of infected cells. EBNA3A has been reported to have one nuclear-localization signal and is targeted to the nucleus during transformation, where it associates with components of the nuclear matrix. By using enhanced green fluorescent protein-tagged deletion mutants of EBNA3A in combination with site-directed mutagenesis, an additional five functional nuclear-localization signals have been identified in the EBNA3A protein. Two of these (aa 63–66 and 375–381) were computer-predicted, whilst the remaining three (aa 394–398, 573–578 and 598–603) were defined functionally in this study.


Sign in / Sign up

Export Citation Format

Share Document