scholarly journals Inherited deficiency of the Mac-1, LFA-1, p150,95 glycoprotein family and its molecular basis.

1984 ◽  
Vol 160 (6) ◽  
pp. 1901-1918 ◽  
Author(s):  
T A Springer ◽  
W S Thompson ◽  
L J Miller ◽  
F C Schmalstieg ◽  
D C Anderson

Leukocyte surface glycoproteins that share a common beta subunit have been found to be congenitally deficient in three unrelated patients with recurring bacterial infection. The glycoproteins, Mac-1, LFA-1, and p150,95, have the subunit compositions alpha M beta, alpha L beta, and alpha X beta, respectively. Using subunit-specific monoclonal antibodies, both the alpha M and beta subunits of Mac-1, the alpha L and beta subunits of LFA-1, and at the least the beta subunit of p150,95, were found to be deficient at the cell surface by the techniques of immunofluorescence flow cytometry, radioimmunoassay, and immunoprecipitation. A latent pool of Mac-1 that can be expressed on granulocyte surfaces in response to secretory stimuli, such as f-Met-Leu-Phe, was also lacking in patients. Deficiency was found on all leukocytes tested, including granulocytes, monocytes, and T and B lymphocytes. Quantitation by immunofluorescence cytometry of subunits on granulocytes from parents of these patients and of a fourth deceased patient showed approximately half-normal surface expression, and, together with data on other siblings and a family with an affected father and children, demonstrate autosomal recessive inheritance. Deficiency appears to be quantitative rather than qualitative, with two patients expressing approximately 0.5% and one patient approximately 5% of normal amounts. The latter patient had alpha beta complexes on the cell surface detectable by immunoprecipitation. Biosynthesis experiments showed the presence of normal amounts of alpha'L intracellular precursor in lymphoid lines of all three patients. Together with surface deficiency of three molecules that share a common beta subunit but have differing alpha subunits, this suggests the primary deficiency is of the beta subunit. The lack of maturation of alpha'L to alpha L and the deficiency of the alpha subunits at the cell surface and in latent pools suggests that association with the beta subunit is required for alpha subunit processing and transport to the cell surface or to latent pools. The molecular basis of this disease is discussed in light of adhesion-related functional abnormalities in patients' leukocytes and the blockade of similar functions in healthy cells by monoclonal antibodies.

1987 ◽  
Vol 105 (4) ◽  
pp. 1873-1884 ◽  
Author(s):  
E A Wayner ◽  
W G Carter

Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 261 (2) ◽  
pp. 333-340 ◽  
Author(s):  
K E Lipson ◽  
A A Kolhatkar ◽  
D B Donner

Insulin receptors in rat liver plasma membranes contain two alpha- and two beta-subunits held together by interchain disulphide bonds ([alpha beta]2 receptors). Affinity-labelled receptors were digested with chymotrypsin or elastase and then exposed to dithiothreitol before solubilization from membranes and SDS/polyacrylamide-gel electrophoresis. This resulted in partial reduction and isolation of Mr-225,000 alpha beta, Mr-200,000 alpha 1 beta, Mr-165,000 alpha beta 1 and Mr-145,000 alpha 1 beta 1 receptor halves containing intact (alpha, beta) or degraded (alpha 1, beta 1) subunits. The ability to identify half-receptor complexes containing intact or degraded subunits made it possible to assay each subunit simultaneously for insulin-induced proteolysis in isolated plasma membranes or during perfusion of rat liver in situ with insulin. In liver membranes, insulin binding increased the fraction of receptors containing degraded alpha-subunits to about one-third of the total population during 2 h of incubation at 23 degrees C. beta-Subunit proteolysis increased only minimally during this time. Plasma membranes isolated from livers perfused with insulin at 37 degrees C contained degraded alpha-subunits but only intact beta-subunits, showing that insulin induced cell-surface proteolysis of the binding, but not the kinase, domain of its receptor. Since previous observations [Lipson, Kolhatkar & Donner (1988) J. Biol. Chem 263, 10495-10501] have shown that receptors containing degraded alpha-subunits are internalized but do not recycle, it is possible that cell-surface degradation may play a role in the regulation of insulin-receptor number in hepatic tissue. Proteolysis of the beta-subunit is not a likely mechanism by which receptor-kinase activity may be attenuated under physiological conditions.


1983 ◽  
Vol 158 (2) ◽  
pp. 586-602 ◽  
Author(s):  
F Sanchez-Madrid ◽  
P Simon ◽  
S Thompson ◽  
T A Springer

Mouse Mac-1, a complement receptor-associated surface structure on macrophages, and LFA-1, a function-associated structure on lymphocytes, comprise a novel family of leukocyte differentiation antigens participating in adhesive cell interactions. Mac-1 and LFA-1 contain alpha-subunits of 170,000 and 180,000 Mr, respectively, and beta-subunits of 95,000 Mr noncovalently associated in alpha 1 beta 1 complexes. The structural relation between the alpha- and between the beta-subunits, and the location of functionally important sites on the molecules, have been probed with antibodies. Both non-cross-reactive and cross-reactive monoclonal antibodies (MAb) and antisera prepared to the purified molecules or the LFA-1 alpha-subunits were used. Reactivity with individual subunits was studied by immunoprecipitation after dissociation induced by high pH treatment, or by immunoblotting after SDS-PAGE. Cross-reactive epitopes on Mac-1 and LFA-1 were found to be present on the beta-subunits, which were immunologically identical. Non-cross-reactive epitopes that are distinctive for Mac-1 or LFA-1 were localized to the alpha-subunits. MAb to LFA-1 alpha-subunit epitopes inhibited CTL-mediated killing. Two MAb to Mac-1 alpha-subunit epitopes but not a third MAb to a spatially distinct alpha-epitope inhibited complement receptor function. Neither function was inhibited by a MAb binding to a common beta-subunit epitope. Therefore, sites of Mac-1 and LFA-1 involved in their respective adhesion-related functions, as well as distinctive structural features, have been localized to the alpha-subunits.


1999 ◽  
Vol 112 (24) ◽  
pp. 4751-4761
Author(s):  
G. Svineng ◽  
S. Johansson

We have previously identified the integrin (beta)1C-2 and characterised the distribution of (beta)1C-1 and (beta)1C-2 transcripts in various cell lines and normal cells. In this study we have investigated the expression of the two (beta)1C-variants in integrin (beta)1 deficient mouse GD25T cells. After stable transfection of the GD25T cells with cDNAs coding for (beta)1A, (beta)1C-1 and (beta)1C-2, the cell surface expression of the (beta)1C-1 and (beta)1C-2 variants was found to be very low while the (beta)1A variant was expressed at high levels. Northern blot analysis showed that the level of (beta)1-transcript in the (beta)1C-1 and (beta)1C-2 clones was equal or higher than in the (beta)1A clones. Metabolic labelling and deglycosylation by endoglycosidase H treatment clearly demonstrated that the majority of the (beta)1C-1 and (beta)1C-2 chains did not become maturely glycosylated, nor did they dimerize with (alpha) subunits. After 20 hours of chase, the labelled (beta)1C-1 and (beta)1C-2 chains had been gradually degraded, whereas immature (beta)1A was converted into the maturely glycosylated form during the same period of time. Immunostaining showed intracellular (beta)1 localisation in the (beta)1C-1 and (beta)1C-2 expressing clones, while in the (beta)1A expressing clones the (beta)1 chains were mainly localised to focal adhesion sites and along fibronectin fibres. Taken together, we have shown that expression of both integrin (beta)1C-1 and (beta)1C-2 in GD25T cells result in very low cell surface expression compared with the normal (beta)1A isoform. Instead, both (beta)1C-1 and (beta)1C-2 chains remain in the endoplasmic reticulum until they are intracellularly degraded.


1994 ◽  
Vol 266 (3) ◽  
pp. C579-C589 ◽  
Author(s):  
D. M. Fambrough ◽  
M. V. Lemas ◽  
M. Hamrick ◽  
M. Emerick ◽  
K. J. Renaud ◽  
...  

The Na-K-ATPase, or sodium pump, is comprised of two subunits, alpha and beta. Each subunit spans the lipid bilayer of the cell membrane. This review summarizes our efforts to determine how the two subunits interact to form the functional ion transporter. Our major approach has been to observe the potential for subunit assembly when one or both subunits are truncated or present as chimeras that retain only a limited region of the Na-K-ATPase. DNAs encoding these altered subunit forms of the avian Na-K-ATPase are expressed in mammalian cells. Monoclonal antibodies specific for the avian beta-subunit are then used to purify newly synthesized avian beta-subunits, and the presence of accompanying alpha-subunits indicates that subunit assembly has occurred. The ectodomain of the beta-subunit (approximately residues 62-304) is sufficient for assembly with the alpha-subunit, and a COOH-terminal truncation of the beta-subunit that lacks aminoacyl residues beyond 162 will assemble inefficiently. A maximum of 26 aminoacyl residues of the alpha-subunit are necessary for robust assembly with the beta-subunit, when this sequence replaces the COOH-terminal half of the loop between membrane spans 7 and 8 in the SERCA1 Ca-ATPase. This region of the Ca-ATPase faces the lumen of the endoplasmic reticulum. These findings encourage study of other related questions, including whether there is preferential assembly of certain subunit isoforms and how various P-type ATPases are targeted to their appropriate subcellular compartments.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 84-90 ◽  
Author(s):  
T Kitamura ◽  
A Miyajima

The high-affinity receptors for human interleukin-3 (IL-3), GM-CSF, and IL-5 are composed of alpha and beta subunits. The alpha subunits are primary ligand binding proteins specific for each ligand, whereas the three human receptors share a common beta subunit (beta c). In contrast to humans mice have two closely related genes, AIC2A and AIC2B, which are homologous to human beta c. The AIC2A gene encodes a low-affinity murine IL-3 binding protein, and the AIC2B protein is the beta subunit shared between murine GM-CSF receptors (mGMR) and IL-5 receptors (mIL- 5R). To examine the function of these receptor components, we established various stable transfectants of murine IL-2-dependent CTLL- 2 cells. CTLL-2 transfectants expressing both the alpha and beta subunits of the human IL-3 receptor (hIL-3R) proliferated in response to physiologic concentrations of hIL-3. Coexpression of hIL-3R alpha with AIC2B but not with AIC2A in CTLL-2 cells conferred a growth response to hIL-3. Although CTLL-2 transfectants expressing hIL-3R alpha alone did not proliferate in the presence of hIL-3, hIL-3- responsive sublines were repeatedly isolated. These sublines expressed endogenous AIC2B but not AIC2A. These results indicate that human beta c is essential for hIL-3 signaling and that AIC2B is a murine equivalent of human beta c. We also showed that hIL-3 and hGM-CSF induced tyrosine phosphorylation of several proteins in CTLL transfectants, similar to those observed in human factor-dependent TF-1 cells stimulated with hIL-3 and hGM-CSF.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 84-90 ◽  
Author(s):  
T Kitamura ◽  
A Miyajima

Abstract The high-affinity receptors for human interleukin-3 (IL-3), GM-CSF, and IL-5 are composed of alpha and beta subunits. The alpha subunits are primary ligand binding proteins specific for each ligand, whereas the three human receptors share a common beta subunit (beta c). In contrast to humans mice have two closely related genes, AIC2A and AIC2B, which are homologous to human beta c. The AIC2A gene encodes a low-affinity murine IL-3 binding protein, and the AIC2B protein is the beta subunit shared between murine GM-CSF receptors (mGMR) and IL-5 receptors (mIL- 5R). To examine the function of these receptor components, we established various stable transfectants of murine IL-2-dependent CTLL- 2 cells. CTLL-2 transfectants expressing both the alpha and beta subunits of the human IL-3 receptor (hIL-3R) proliferated in response to physiologic concentrations of hIL-3. Coexpression of hIL-3R alpha with AIC2B but not with AIC2A in CTLL-2 cells conferred a growth response to hIL-3. Although CTLL-2 transfectants expressing hIL-3R alpha alone did not proliferate in the presence of hIL-3, hIL-3- responsive sublines were repeatedly isolated. These sublines expressed endogenous AIC2B but not AIC2A. These results indicate that human beta c is essential for hIL-3 signaling and that AIC2B is a murine equivalent of human beta c. We also showed that hIL-3 and hGM-CSF induced tyrosine phosphorylation of several proteins in CTLL transfectants, similar to those observed in human factor-dependent TF-1 cells stimulated with hIL-3 and hGM-CSF.


1986 ◽  
Vol 164 (3) ◽  
pp. 855-867 ◽  
Author(s):  
S D Marlin ◽  
C C Morton ◽  
D C Anderson ◽  
T A Springer

Lymphocyte function associated antigen 1 (LFA-1) is a leukocyte cell adhesion protein. We have studied a novel human immunodeficiency disease in which LFA-1 and two other proteins which share the same beta subunit are lacking from the surface of leukocytes. The basis of the inherited defect in cell surface expression of both the alpha and beta subunits of LFA-1 was determined by somatic cell fusion of patient or normal human cells with an LFA-1+ mouse T cell line. Human LFA-1 alpha and beta subunits from normal cells could associate with mouse LFA-1 subunits to form interspecies hybrid alpha beta complexes. Surface expression of the alpha but not the beta subunit of patient cells was rescued by the formation of interspecies complexes. The findings show that the LFA-1 alpha subunit in genetically deficient cells is competent for surface expression in the presence of an appropriate beta subunit, and suggest that the genetic lesion affects the beta subunit. The human LFA-1 alpha and beta subunits were mapped to chromosomes 16 and 21, respectively. The genetic defect is inferred to be on chromosome 21.


1993 ◽  
Vol 264 (3) ◽  
pp. C583-C590 ◽  
Author(s):  
L. Lescale-Matys ◽  
D. S. Putnam ◽  
A. A. McDonough

Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein consisting of an alpha-catalytic and a beta-glycoprotein subunit. Because these two subunits are derived from two separate genes, they may not be synthesized with stoichiometric equivalence. The aim of this study was to estimate relative rates of synthesis and degradation of nascent and mature Na(+)-K(+)-ATPase alpha- and beta-subunits to determine whether either of the nascent subunits accumulates in excess and, if so, the fate of the excess subunits. We studied a pig kidney cell line (LLC-PK1/Cl4) that expresses only alpha 1- and beta 1-subunits. Relative synthesis and degradation rates of nascent subunits were first estimated by pulsing cells for 10 min with [35S]methionine followed by chase periods of up to 120 min and by immunoprecipitation. We found that directly after labeling, beta-subunits were present in threefold excess over alpha-subunits and that nearly 50% of this beta-subunit pool was degraded by 60 min. Nascent alpha-subunits were not degraded during the chase period. In a second strategy to examine relative rates of nascent alpha- vs. beta-subunit accumulation, cells were pulsed for 5-60 min and immunoprecipitated directly (without chase). The rate of accumulation of labeled alpha was greater than that of beta between 5 and 60 min, consistent with the results of the pulse-chase strategy, demonstrating a significant component of degradation of beta during this period. Despite the very different degradation rates of newly synthesized alpha- vs. beta-subunits, the degradation rates of alpha- and beta-subunits beyond 4 h after synthesis were indistinguishable (t0.5 = 10-12 h).(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 273 (3) ◽  
pp. 673-678 ◽  
Author(s):  
P Hainaut ◽  
A Kowalski ◽  
S Giorgetti ◽  
V Baron ◽  
E Van Obberghen

Insulin and insulin-like-growth-factor-I (IGF-I) receptors were partially purified from full-grown (stages V-VI) Xenopus laevis oocytes by affinity chromatography on wheat-germ agglutinin-agarose. Competitive-binding assays revealed high-affinity binding sites for both insulin and IGF-I (Kd = 2.5 x 10(-10) M and 8 x 10(-10) M respectively). However, IGF-I receptors were about 15 times more abundant than insulin receptors (22.5 x 10(11) versus 1.5 x 10(11)/mg of protein). Moreover, comparison of intact and collagenase-treated oocytes showed that most of the insulin receptors were in the oocyte envelopes, whereas IGF-I receptors were essentially at the oocyte surface. Oocyte receptors were composed of alpha-subunits of approximately 130 kDa and a doublet of beta-subunits of 95 and 105 kDa, which both had ligand-induced phosphorylation patterns compatible with IGF-I receptor beta-subunits. Accordingly, the receptor tyrosine kinase was stimulated at low IGF-I concentrations [half-maximally effective concentration (EC50) approximately 0.5-1 nM], and at higher insulin concentrations (EC50 approximately 20-50 nM). Partially purified glycoproteins from Xenopus liver and muscle contained mainly receptors of the insulin-receptor type, with alpha-subunits of 140 kDa in liver and 125 kDa in muscle, and doublets of beta-subunits of 92-98 kDa in liver and 85-94 kDa in muscle. Immunoprecipitation of receptors from oocytes, liver and muscle by receptor-specific anti-peptide antibodies suggested that the beta-subunit heterogeneity resulted from the existence of two distinct IGF-I receptors in oocytes and of two distinct insulin receptors in both liver and muscle. In the different tissues, the two receptor subtypes differed at least by their beta-subunit C-terminal region.


Sign in / Sign up

Export Citation Format

Share Document