scholarly journals Effects of activation on lipoprotein lipase secretion by macrophages. Evidence for autoregulation.

1986 ◽  
Vol 164 (4) ◽  
pp. 1362-1367 ◽  
Author(s):  
S R Behr ◽  
F B Kraemer

Lipoprotein lipase (LPL) activity was measured in the media of cultured mouse peritoneal macrophages that were isolated after the intraperitoneal injection of inflammatory agents in order to yield a variety of states of activation. Fully activated macrophages obtained from Corynebacterium parvum-injected mice secreted very low levels of LPL when compared to unstimulated macrophages, while inflammatory and primed macrophages had increased LPL secretion. When inflammatory macrophages were incubated with conditioned medium obtained from fully activated macrophages, LPL secretion decreased in a time- and dose-dependent fashion. The factor(s) secreted by fully activated macrophages that inhibited LPL secretion was shown to be thermolabile and distinct from tumor necrosis factor. These results demonstrate that activation dramatically alters macrophage LPL secretion.

1979 ◽  
Vol 149 (5) ◽  
pp. 1056-1068 ◽  
Author(s):  
C Nathan ◽  
N Nogueira ◽  
C Juangbhanich ◽  
J Ellis ◽  
Z Cohn

As reported previously, mouse peritoneal macrophages could be activated to kill intracellular trypomastigotes of Trypanosoma cruzi, the agent of Chagas' disease, in either of two ways: by immunizing and boosting the mice (3), or by culturing resident or inflammatory macrophages in spleen cell factor(s) (SCF) in vitro (2). Macrophages activated in vivo became less trypanocidal with time in culture, and cells activated in vitro lost trypanocidal capacity when CSF was removed (2). In the present study, the ability of macrophages to release H2O2 in response to phorbol myristate acetate (PMA) could be induced in vivo and in vitro, and reversed in vitro, in a manner correlating closely with changes in trypanocidal activity. Macrophages could be activated in vitro with SCF in a time-dependent and dose-dependent fashion, so that they released as much H2O2 as macrophages activated in vivo. The sensitivity of epimastigotes and trypomastigotes to enzymatically generated H2O2 suggested that the generation of H2O2 by activated macrophages could be plausible explanation for their trypanocidal activity. Of the biochemical correlates of macrophage activation reported to date, increased ability to release H2O2 seems most closely allied to enhanced capacity to kill an intracellular pathogen.


1984 ◽  
Vol 159 (1) ◽  
pp. 167-178 ◽  
Author(s):  
R Takemura ◽  
Z Werb

We have determined the effect of various endocytic ligands on the secretion of ApoE by macrophages. ApoE was a major secreted protein of resident macrophages, but BCG-activated macrophages secreted little ApoE and periodate-elicited macrophages secreted intermediate amounts of ApoE. Resident, periodate-elicited, and BCG-activated mouse peritoneal macrophages were incubated with AcLDL, EIgG, EIgMC, dextran sulfate, latex, or zymosan, and the resulting protein secretion patterns were analyzed by [35S]methionine labeling and SDS-polyacrylamide gel electrophoresis. AcLDL increased total [35S]methionine incorporation into secreted proteins. Although AcLDL increased the secretion of ApoE by resident macrophages less than or equal to fivefold in a dose-dependent manner, with maximal stimulation at 4.8 micrograms/ml, it decreased the secretion of ApoE by periodate-elicited macrophages to almost nothing and did not affect the low rate of secretion of ApoE by BCG-activated macrophages. However, EIgG, which increases cellular cholesterol content of macrophages as AcLDL does, did not increase ApoE secretion, and dextran sulfate, which is recognized by the same receptor as AcLDL, also did not increase ApoE secretion. The binding and uptake of EIgG, dextran sulfate, zymosan, latex, and EIgMC all decreased the secretion of ApoE. These endocytic ligands also altered the pattern of secreted and cellular proteins other than ApoE. The pattern of response was ligand-specific. However, increased secretion of polypeptides of Mr 62,000 and 68,000 was common to many stimuli. We conclude that receptor-mediated endocytosis modulates the secretion of ApoE and other proteins pleiotypically in resident, inflammatory, and activated macrophages.


1992 ◽  
Vol 1 (6) ◽  
pp. 375-377 ◽  
Author(s):  
Fang Jun ◽  
Zheng Qin Yue ◽  
Wang Hong Bin ◽  
Ju Dian Wen ◽  
Yi Yang Hua

Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. Previous experiments showed that it had strong anti-inflammatory effects. Tumour necrosis factor (TNF) is an important inflammatory mediator. In order to study the mechanism of the anti-inflammatory effect of EsA, it was determined whether TNF production from macrophages was altered by EsA under lipopolysaccharide (LPS) stimulated conditions. EsA was found to decrease both extracellular and cell associated TNF production in a dose dependent manner at concentrations higher than 1 μmol/l EsA. Previous studies have showed that EsA reduced the releasing of platelet activating factor (PAF) from rat macrophages. The reducing effects of EsA on the release of TNF and PAF may explain its anti-inflammatory effect.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


1993 ◽  
Vol 177 (2) ◽  
pp. 511-516 ◽  
Author(s):  
X Zhang ◽  
D C Morrison

Preculture of thioglycollate-elicited C3HeB/FeJ mouse peritoneal macrophages in vitro with subthreshold stimulatory concentrations of lipopolysaccharide (LPS) can induce hyporesponsiveness (desensitization) to both tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) production when these cells are subsequently stimulated with 100 ng/ml of LPS. We have established, however, that the primary dose of LPS required for inducing downregulation of NO production is significantly lower than that required for inducing downregulation of TNF-alpha production. Further, when LPS-pretreated macrophages become refractory to subsequent LPS stimulation for NO production, the secondary LPS-stimulated TNF-alpha production is markedly enhanced, and vice versa. These results indicate that LPS-induced TNF-alpha and NO production by macrophages are differentially regulated, and that the observed desensitization process may not reflect a state in which macrophages are totally refractory to subsequent LPS stimulation. Rather, our data suggest that LPS-pretreated macrophages become selectively primed for differential responses to LPS. The LPS-induced selective priming effects are not restricted to LPS stimulation, but extend as well to stimuli such as zymosan, Staphylococcus aureus, and heat-killed Listeria monocytogenes.


1989 ◽  
Vol 260 (2) ◽  
pp. 471-478 ◽  
Author(s):  
H J Pfannkuche ◽  
V Kaever ◽  
D Gemsa ◽  
K Resch

Resident mouse peritoneal macrophages synthesized and released prostaglandins (PGs) when challenged with 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1,2-dioctanoyl-sn-glycerol (DiC8). Both stimuli were found to activate Ca2+/phospholipid-dependent protein kinase C (PKC). 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (‘H-7’) and D-sphingosine, known to inhibit PKC by different mechanisms, were able to decrease the PKC activity of macrophages in a dose-dependent manner. Addition of either PKC inhibitor decreased PG synthesis and also the release of arachidonic acid (AA) from phospholipids induced by TPA or DiC8. Simultaneously TPA or DiC8 also decreased incorporation of free AA into membrane phospholipids of macrophages. AA incorporation could be restored, however, by pretreatment with the PKC inhibitors. Our results demonstrate an involvement of PKC in the regulation of PG synthesis in mouse peritoneal macrophages and provide further evidence that reacylation of released fatty acids may be an important regulatory step.


2010 ◽  
Vol 59 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Ema Paulovičová ◽  
Elena Kováčová ◽  
Slavomír Bystrický

Multidrug resistance in several strains of Vibrio cholerae has encouraged anti-cholera vaccine developmental attempts using various subcellular moieties. In order to examine the immunological efficacy of detoxified LPS (dLPS)-derived saccharide immunogens, ex vivo activation of mouse peritoneal macrophages (MΦs) was investigated. The immunomodulatory effect was evaluated via induction of the pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-1α and IL-6 and acceleration of nitric oxide (NO) and reactive oxygen species (ROS). Immunologically active structures triggered mouse peritoneal MΦs to secrete cytokines and release NO/ROS, even at concentrations as low as 12.5 μg ml−1. It was found that the O-specific polysaccharide moiety was more immunologically efficient than the glycolipid one, probably due to the position of 3-deoxy-d-manno-octulosonic acid. The results revealed effective structure–immunomodulating relationships of dLPS-derived moieties that are desirable in subcellular anti-cholera vaccine design.


1999 ◽  
Vol 343 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Xiaosong WANG ◽  
Joachim GREILBERGER ◽  
Sanja LEVAK-FRANK ◽  
Robert ZIMMERMANN ◽  
Rudolf ZECHNER ◽  
...  

It has been well established that purified lipoprotein lipase (LPL) can facilitate the cellular uptake of various native and modified lipoproteins when added exogenously to macrophages. Because activated macrophages express LPL endogenously, it was the aim of this study to investigate the effect of macrophage-produced LPL on the uptake of native low-density lipoprotein (LDL) and LDL that has been modified to various degrees by Cu2+-mediated oxidation. Cell binding and uptake of Eu3+-labelled native and oxidized LDL was determined in mouse peritoneal macrophages (MPM) from normal mice and induced mutant mice that lack LPL expression in MPM. We found that LPL expressed by MPM was able to increase cell binding and association of native LDL (by 121% and 101% respectively), mildly oxidized LDL (by 47% and 43%) and moderately oxidized LDL (by 30% and 22%). With increased levels of lipoprotein oxidation, the relative proportion of LPL-mediated LDL uptake decreased. This decrease was not due to weakened binding of LPL to oxidized LDL. The drastically increased uptake of highly oxidized LDL in MPM by scavenger-receptor-mediated pathways might dominate the simultaneous exogenous or endogenous LPL-mediated uptake of this lipoprotein. Competition experiments with positively charged poly(amino acids) furthermore suggested that histidine, arginine and lysine residues in LPL are important for the interaction between LDL and LPL. Our results imply that physiological levels of LPL produced by macrophages facilitate the uptake of native LDL as well as mildly and moderately oxidized LDL. This process might, in the micro-environment of arteries, contribute to the accumulation of macrophage lipids and the formation of foam cells.


Sign in / Sign up

Export Citation Format

Share Document