scholarly journals Elevated myc expression and c-myc amplification in spontaneously occurring B lymphoid cell lines.

1987 ◽  
Vol 165 (4) ◽  
pp. 1188-1194 ◽  
Author(s):  
Y Citri ◽  
J Braun ◽  
D Baltimore

Recently, a minor subpopulation of murine B lymphocytes, Ly-1+ B cells, has been distinguished by its unique ontogeny, tissue distribution, and prominence in certain autoimmune and neoplastic B cell diseases. We have previously described a simple murine spleen culture system that results in the spontaneous and exclusive outgrowth of long-term Ly-1+ B cell lines (B Ly-1 cells). Here, we report that the immortal growth property of B Ly-1 cells correlates with a 10-45-fold elevation of steady-state myc RNA and 2-10-fold amplification of the c-myc locus. While c-myc amplification has been observed in malignant cell lines derived from several tissues of origin, its occurrence in lymphoid cells has not been previously reported. The consistent c-myc amplification in B Ly-1 cells may reflect a unique state of this locus in the Ly-1+ B lymphocyte lineage, and contribute to the spontaneous immortalization of this B cell population in vitro, and its apparent predilection for malignant transformation in vivo.

Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4159-4165 ◽  
Author(s):  
Agnieszka P. Szremska ◽  
Lukas Kenner ◽  
Eva Weisz ◽  
Rene G. Ott ◽  
Emmanuelle Passegué ◽  
...  

Abstract The activator protein 1 (AP-1) member JunB has recently been implicated in leukemogenesis. Here we surveyed human lymphoma samples for expression of JunB and other AP-1 members (c-Jun, c-Fos, Fra1, JunD). JunB was strongly expressed in T-cell lymphomas, but non-Hodgkin B-cell lymphomas do not or only weakly express JunB. We therefore asked whether JunB acted as a negative regulator of B-cell development, proliferation, and transformation. We used transgenic mice that expressed JunB under the control of the ubiquitin C promoter; these displayed increased JunB levels in both B- and T-lymphoid cells. JunB transgenic cells of B-lymphoid, but not of T-lymphoid, origin responded poorly to mitogenic stimuli. Furthermore, JunB transgenic cells were found to be less susceptible to the transforming potential of the Abelson oncogene in vitro. In addition, overexpression of JunB partially protected transgenic mice against the oncogenic challenge in vivo. However, transformed B cells eventually escaped from the inhibitory effect of JunB: the proliferative response was similar in explanted tumor-derived cells from transgenic animals and those from wild-type controls. Our results identify JunB as a novel regulator of B-cell proliferation and transformation. (Blood. 2003;102:4159-4165)


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


1992 ◽  
Vol 12 (6) ◽  
pp. 2662-2672 ◽  
Author(s):  
Z Kozmik ◽  
S Wang ◽  
P Dörfler ◽  
B Adams ◽  
M Busslinger

The CD19 protein is expressed on the surface of all B-lymphoid cells with the exception of terminally differentiated plasma cells and has been implicated as a signal-transducing receptor in the control of proliferation and differentiation. Here we demonstrate complete correlation between the expression pattern of the CD19 gene and the B-cell-specific transcription factor BSAP in a large panel of B-lymphoid cell lines. The human CD19 gene has been cloned, and several BSAP-binding sites have been mapped by in vitro protein-DNA binding studies. In particular, a high-affinity BSAP-binding site instead of a TATA sequence is located in the -30 promoter region upstream of a cluster of heterogeneous transcription start sites. Moreover, this site is occupied by BSAP in vivo in a CD19-expressing B-cell line but not in plasma or HeLa cells. This high-affinity site has been conserved in the promoters of both human and mouse CD19 genes and was furthermore shown to confer B-cell specificity to a beta-globin reporter gene in transient transfection experiments. In addition, BSAP was found to be the only abundant DNA-binding activity of B-cell nuclear extracts that interacts with the CD19 promoter. Together, this evidence strongly implicates BSAP in the regulation of the CD19 gene.


1985 ◽  
Vol 161 (4) ◽  
pp. 832-849 ◽  
Author(s):  
E E Max ◽  
S J Korsmeyer

As part of an ongoing investigation of the regulation of gene expression in B cell development, we have obtained a genomic DNA clone encoding the human J chain protein. The nucleotide sequence of exons encoding the mature protein defines a 137 amino acid primary sequence similar to that previously determined at the protein level. Probes from the gene have been used to analyze J chain expression in human cell lines corresponding to pre-B and B lymphocytes. J chain RNA was detected in two of six human pre-B cell lines and in 8 of 10 B cell lines expressing various Ig isotypes. The expression of the J chain gene is, thus, not tightly linked to IgM or IgA secretion. Our data do not, however, support the recent suggestion (7) that synthesis of J chain precedes that of mu chain in B lymphocyte differentiation. Because of the presence of nine candidate polyadenylation signals (AATAAA or AATTAAA) downstream of the C-terminal coding block of the J chain gene, the 3' end of the gene could not be determined from sequence data alone. To define the 3' end, J chain RNA from a human B lymphocyte line was used to protect an end-labelled DNA fragment from S1 nuclease digestion. The sequence 40 basepairs 5' of the functional polyadenylation site identified by these S1 experiments is homologous the same region of a previously reported mouse J chain complementary DNA clone.


1992 ◽  
Vol 12 (2) ◽  
pp. 518-530
Author(s):  
R Palacios ◽  
J Samaridis

We describe here the development and characterization of the FLS4.1 stromal line derived from 15-day fetal liver of BALB/c embryos and defined culture conditions that efficiently support the cloning and long-term growth of nontransformed B-220+ 14-day fetal liver cells at two stages of B-cell development, namely, pro-B lymphocytes (immunoglobulin [Ig] genes in germ line configuration) and pre-B cells (JH-rearranged genes with both light-chain Ig genes in the germ line state). All B-cell precursor clones require recombinant interleukin-7 (rIL-7) and FLS4.1 stromal cells for continuous growth in culture, but pro-B lymphocyte clones can also proliferate in rIL-3. None proliferate in rIL-1, rIL-2, rIL-4, rIL-5, rIL-6, or leukemia inhibitory factor. FLS4.1 stromal cells synthesize mRNA for Steel factor but not for IL-1 to IL-7; all pro-B and pre-B clones express c-Kit, the receptor for Steel factor, and a c-Kit-specific antibody inhibits the enhanced proliferative response of fetal liver B-220+ B-cell precursors supported by FLS4.1 stromal cells and exogenous rIL-7 but does not affect that promoted by rIL-7 alone. Northern (RNA) blot analysis of the expression of the MB-1, lambda 5, Vpre-B, c mu, RAG-1, and RAG-2 genes in pro-B and pre-B clones show that transcription of the MB-1 gene precedes IgH gene rearrangement and RNA synthesis from c mu, RAG-1, RAG-2, lambda 5, and Vpre-B genes. All clones at the pre-B-cell stage synthesize mRNA for c mu, RAG-1, and RAG-2 genes; transcription of the lambda 5 and Vpre-B genes seems to start after D-to-JH rearrangement in B-cell precursors, indicating that the proteins encoded by either gene are not required for B-cell progenitors to undergo D-to-JH gene rearrangement. These findings mark transcription of the MB-1 gene as one of the earliest molecular events in commitment to develop along the B-lymphocyte pathway. Indeed, both pro-B and pre-B clones can generate in vitro and in vivo B lymphocytes but not T lymphocytes; moreover, these clones do not express the CD3-gamma T-cell-specific gene, nor do they have rearranged gamma, delta, or beta T-cell antigen receptor genes.


Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 824-829
Author(s):  
BS Wilson ◽  
JL Platt ◽  
NE Kay

Several mouse monoclonal IgG antibodies (AB1, AB2, AB3, and AB5) were developed that reacted with a 140,000 mol wt glycoprotein on the surface of cultured RAJI B lymphoid cells. The antibodies reacted with purified normal human peripheral blood B cells and CLL Ig+ B cells and showed specific germinal center and mantle zone staining in tissue sections of secondary lymphoid organs. Immunodepletion studies using 125I surface-labeled Raji cell membrane antigens demonstrated that the antigen identified by AB5 is the same 140,000 mol wt glycoprotein detected by anti-B2 that has recently been shown to react with the C3d fragment or CR2 receptor. (Iida et al: J Exp Med 158:1021, 1983). Addition of the AB series and anti-B2 monoclonal antibodies to cultures of purified human peripheral blood B cells resulted in the uptake of 3H- thymidine at two to six times background control levels provided that irradiated autologous T cells were added to the culture. Stimulation was not evoked by other monoclonal antibodies to B cell surface molecules (ie, B1, BA-1, BA-2, and HLA-DR). Pepsin-generated F(ab')2 fragments of anti-CR2 antibodies were essentially as effective as the intact IgG molecule in stimulating B cells. Induction of B cell proliferation by antibody binding to CR2 suggests that the C3d receptor may have an integral role in regulation of humoral immune response.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4898-4906 ◽  
Author(s):  
Andrea Hoelbl ◽  
Boris Kovacic ◽  
Marc A. Kerenyi ◽  
Olivia Simma ◽  
Wolfgang Warsch ◽  
...  

AbstractThe Stat5 transcription factors Stat5a and Stat5b have been implicated in lymphoid development and transformation. Most studies have employed Stat5a/b-deficient mice where gene targeting disrupted the first protein-coding exon, resulting in the expression of N-terminally truncated forms of Stat5a/b (Stat5a/bΔN/ΔN mice). We have now reanalyzed lymphoid development in Stat5a/bnull/null mice having a complete deletion of the Stat5a/b gene locus. The few surviving Stat5a/bnull/null mice lacked CD8+ T lymphocytes. A massive reduction of CD8+ T cells was also found in Stat5a/bfl/fllck-cre transgenic animals. While γδ T-cell receptor–positive (γδTCR+) cells were expressed at normal levels in Stat5a/bΔN/ΔN mice, they were completely absent in Stat5a/bnull/null animals. Moreover, B-cell maturation was abrogated at the pre–pro-B-cell stage in Stat5a/bnull/null mice, whereas Stat5a/bΔN/ΔN B-lymphoid cells developed to the early pro-B-cell stage. In vitro assays using fetal liver-cell cultures confirmed this observation. Most strikingly, Stat5a/bnull/null cells were resistant to transformation and leukemia development induced by Abelson oncogenes, whereas Stat5a/bΔN/ΔN-derived cells readily transformed. These findings show distinct lymphoid defects for Stat5a/bΔN/ΔN and Stat5a/bnull/null mice and define a novel functional role for the N-termini of Stat5a/b in B-lymphoid transformation.


Sign in / Sign up

Export Citation Format

Share Document