scholarly journals Interferon gamma induces synthesis of complement alternative pathway proteins by human endothelial cells in culture.

1988 ◽  
Vol 168 (5) ◽  
pp. 1917-1922 ◽  
Author(s):  
J Ripoche ◽  
J A Mitchell ◽  
A Erdei ◽  
C Madin ◽  
B Moffatt ◽  
...  

Human umbilical vein endothelial cells grown in vitro under standard conditions contain a high level of mRNA specific for the complement regulatory factors H and I. An additional 1.8-kb mRNA encoding a truncated form of factor H is also present. IFN-gamma stimulation of the cells causes a 6-7 fold increase in both factor H mRNA species, and a greater than 10-fold increase in factor I mRNA. IL-1 and LPS slightly suppressed factor H mRNA, while TNF had no effect. mRNA for factor B is also detectable in IFN-gamma-stimulated cells, but messengers for C1q, C4bp, and CR3 beta chain were not found. Secretion of factor H protein was also stimulated by IFN-gamma. The presence of mRNA for factors H, B, and I, together with C3 secretion, demonstrated by others, suggests that endothelial cells can assemble the complete alternative complement pathway. Endothelial cell complement may be involved in leukocyte-endothelium interactions mediated by leukocyte C3 receptors.

1985 ◽  
Vol 54 (02) ◽  
pp. 373-376 ◽  
Author(s):  
K S Galdal ◽  
T Lyberg ◽  
S A Evensen ◽  
E Nilsen ◽  
H Prydz

SummaryCultured human umbilical vein endothelial cells responded to thrombin (10−2 – 10 NIH u/ml) with a 2-5 fold increase in thromboplastin activity. The maximum response was reached after 4 hr in serum-free medium. The effect of thrombin was fully inhibited by the presence of 50% (v/v) fetal calf serum or more in the medium, by preincubation of thrombin with hirudin or by treatment of thrombin with N-bromosuccinimide or phenylmethylsulfonyl fluoride. The thrombin-induced thromboplastin activity was inhibited by incubation of the cells with cycloheximide (2 μg/ml) or actinomycin D (2 μg/ml) showing that the response depended on de novo protein and RNA synthesis. It was also suppressed by exposure of the cells to two different phosphodiesterase inhibitors, 3-butyl-l-methyl-xanthine (5 · 10−4 M) and rac-4 (3-butoxy-4-methoxybenzyl)-2-imidazole (5 · 10−4 M), to the transmethylation inhibitors 3-deazaadenosine (10−5 M) and 1-homocysteine thiolactone (2 · 10−5 M) in combination and to the intracellular calcium antagonist 8-(N,N-diethylamino)-octyl 3,4,5,-tri-methoxybenzoate hydrochloride (8 · 10−5 M). Our results suggest that small amounts of thrombin can induce thromboplastin synthesis in endothelial cells in vitro and that this synthesis probably is regulated by the intracellular level of cAMP, by cytoplasmic Ca2+ and possibly also by transmethylation reactions.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 689-695 ◽  
Author(s):  
E McCall ◽  
GC Jr Bagby

Abstract Cultured monocytes release a factor, monocyte-derived recruiting activity (MRA), which stimulates fibroblasts, endothelial cells, and T lymphocytes to produce colony-stimulating activity (CSA). We studied the kinetics of MRA production using a technique in which MRA levels were measured in a two stage bioassay. We used umbilical vein endothelial cells as the MRA-responsive (CSA-producing) cells, and normal colony-forming unit granulocyte-macrophage (CFU-GM)-enriched bone marrow cells (T lymphocyte- and monocyte-depleted, low density bone marrow cells) as the CSA-responsive cells. MRA stimulated a 30- fold increase in CSA production by endothelial cells. MRA production was detected in supernatants from as few as 10(3) monocytes per milliliter, required the presence of fetal calf serum, and was inhibited by cycloheximide (10 to 100 micrograms/mL) and puromycin (10 to 50 micrograms/mL). Production was detectable after 24 hours of monocyte incubation, was maintained for three days, and fell to undetectable levels by seven days. With the addition of bacterial endotoxin (lipopolysaccharide [LPS]) (50 micrograms per 10(6) cells), MRA was detectable after only three hours of incubation, and levels peaked at 24 hours. Further, maximum MRA levels in the supernatants of LPS-stimulated monocytes were up to ten times greater than peak levels in the supernatants of unstimulated monocytes. Endotoxin augmented monocyte production of MRA to a greater extent than it did CSA production, indicating that the stimulation of CSA production by endotoxin may be at least partly indirect. The responsiveness of MRA production to endotoxin in vitro is consistent with the notion that MRA may be a biologically relevant regulator of CSA production by cells of the hematopoietic microenvironment.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 689-695
Author(s):  
E McCall ◽  
GC Jr Bagby

Cultured monocytes release a factor, monocyte-derived recruiting activity (MRA), which stimulates fibroblasts, endothelial cells, and T lymphocytes to produce colony-stimulating activity (CSA). We studied the kinetics of MRA production using a technique in which MRA levels were measured in a two stage bioassay. We used umbilical vein endothelial cells as the MRA-responsive (CSA-producing) cells, and normal colony-forming unit granulocyte-macrophage (CFU-GM)-enriched bone marrow cells (T lymphocyte- and monocyte-depleted, low density bone marrow cells) as the CSA-responsive cells. MRA stimulated a 30- fold increase in CSA production by endothelial cells. MRA production was detected in supernatants from as few as 10(3) monocytes per milliliter, required the presence of fetal calf serum, and was inhibited by cycloheximide (10 to 100 micrograms/mL) and puromycin (10 to 50 micrograms/mL). Production was detectable after 24 hours of monocyte incubation, was maintained for three days, and fell to undetectable levels by seven days. With the addition of bacterial endotoxin (lipopolysaccharide [LPS]) (50 micrograms per 10(6) cells), MRA was detectable after only three hours of incubation, and levels peaked at 24 hours. Further, maximum MRA levels in the supernatants of LPS-stimulated monocytes were up to ten times greater than peak levels in the supernatants of unstimulated monocytes. Endotoxin augmented monocyte production of MRA to a greater extent than it did CSA production, indicating that the stimulation of CSA production by endotoxin may be at least partly indirect. The responsiveness of MRA production to endotoxin in vitro is consistent with the notion that MRA may be a biologically relevant regulator of CSA production by cells of the hematopoietic microenvironment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Christiane D. Much ◽  
Barbara S. Sendtner ◽  
Konrad Schwefel ◽  
Eric Freund ◽  
Sander Bekeschus ◽  
...  

Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1−/− BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1−/− BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1−/− BOECs which was observed in CCM1+/− BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zaipul I. Md Dom ◽  
Caterina Pipino ◽  
Bozena Krolewski ◽  
Kristina O’Neil ◽  
Eiichiro Satake ◽  
...  

AbstractWe recently identified a kidney risk inflammatory signature (KRIS), comprising 6 TNF receptors (including TNFR1 and TNFR2) and 11 inflammatory proteins. Elevated levels of these proteins in circulation were strongly associated with risk of the development of end-stage kidney disease (ESKD) during 10-year follow-up. It has been hypothesized that elevated levels of these proteins in circulation might reflect (be markers of) systemic exposure to TNFα. In this in vitro study, we examined intracellular and extracellular levels of these proteins in human umbilical vein endothelial cells (HUVECs) exposed to TNFα in the presence of hyperglycemia. KRIS proteins as well as 1300 other proteins were measured using the SOMAscan proteomics platform. Four KRIS proteins (including TNFR1) were down-regulated and only 1 protein (IL18R1) was up-regulated in the extracellular fraction of TNFα-stimulated HUVECs. In the intracellular fraction, one KRIS protein was down-regulated (CCL14) and 1 protein was up-regulated (IL18R1). The levels of other KRIS proteins were not affected by exposure to TNFα. HUVECs exposed to a hyperglycemic and inflammatory environment also showed significant up-regulation of a distinct set of 53 proteins (mainly in extracellular fraction). In our previous study, circulating levels of these proteins were not associated with progression to ESKD in diabetes.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Shumei Man ◽  
Eroboghene E. Ubogu ◽  
Katherine A. Williams ◽  
Barbara Tucky ◽  
Melissa K. Callahan ◽  
...  

Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document