scholarly journals Molecular characteristics of antibodies bearing an anti-DNA-associated idiotype.

1991 ◽  
Vol 174 (6) ◽  
pp. 1639-1652 ◽  
Author(s):  
A Manheimer-Lory ◽  
J B Katz ◽  
M Pillinger ◽  
C Ghossein ◽  
A Smith ◽  
...  

Anti-double-stranded DNA antibodies are the hallmark of the disease systemic lupus erythematosus and are believed to contribute to pathogenesis. While a large number of anti-DNA antibodies from mice with lupus-like syndromes have been characterized and their variable region genes sequenced, few human anti-DNA antibodies have been reported. We describe here the variable region gene sequences of eight antibodies produced by Epstein-Barr virus (EBV)-transformed B cells that bear the 3I idiotype, an idiotype expressed on anti-DNA antibodies and present in high titer in patients with systemic lupus. The comparison of these antibodies to the light chains of 3I+ myeloma proteins and serum antibodies reveals that EBV transformation yields B cells producing antibodies representative of the expressed antibody repertoire. The analysis of nucleotide and amino acid sequences of these antibodies suggests the first complementarity determining region of the light chain may be important in DNA binding and that paradigms previously generated to account for DNA binding require modification. The understanding of the molecular genetics of the anti-DNA response requires a more complete description of the immunoglobulin germ line repertoire, but data reported here suggest that somatic diversification is a characteristic of the anti-DNA response.

1999 ◽  
Vol 189 (11) ◽  
pp. 1799-1814 ◽  
Author(s):  
Laura Mandik-Nayak ◽  
Su-jean Seo ◽  
Caroline Sokol ◽  
Kathryn M. Potts ◽  
Anh Bui ◽  
...  

A hallmark of systemic lupus erythematosus and the MRL murine model for lupus is the presence of anti–double-stranded (ds)DNA antibodies (Abs). To identify the steps leading to the production of these Abs in autoimmune mice, we have compared the phenotype and localization of anti-dsDNA B cells in autoimmune (MRL+/+ and lpr/lpr) mice with that in nonautoimmune (BALB/c) mice. Anti-dsDNA B cells are actively regulated in BALB/c mice as indicated by their developmental arrest and accumulation at the T–B interface of the splenic follicle. In the MRL genetic background, anti-dsDNA B cells are no longer developmentally arrested, suggesting an intrinsic B cell defect conferred by MRL background genes. With intact Fas, they continue to exhibit follicular exclusion; however, in the presence of the lpr/lpr mutation, anti-dsDNA B cells are now present in the follicle. Coincident with the altered localization of anti-dsDNA B cells is a follicular infiltration of CD4 T cells. Together, these data suggest that MRL mice are defective in maintaining the developmental arrest of autoreactive B cells and indicate a role for Fas in restricting entry into the follicle.


1986 ◽  
Vol 164 (4) ◽  
pp. 1029-1042 ◽  
Author(s):  
W H Reeves ◽  
N Chiorazzi

We have previously shown that sera from some patients with SLE and related disorders contain autoantibodies to a DNA-binding protein complex designated p70/p80. The present study shows that anti-p70/p80 autoantibodies are frequently accompanied by anti-DNA antibodies and cryoglobulins. When the cryoglobulins were isolated, they were found to be specifically enriched in both anti-p70/p80 and anti-DNA activities. The anti-p70/p80 and anti-DNA antibodies were found to be distinct populations of autoantibodies rather than a single crossreactive species, since they could be separated from one another by chromatography on DNA-cellulose. Certain human anti-DNA mAbs could inhibit the binding of autoimmune polyclonal anti-p70/p80 antibodies to p70/p80, suggesting that anti-DNA antibodies might also associate with the variable regions of some anti-p70/p80 antibodies in the cryoglobulins. Binding of one murine anti-p70/p80 mAb (111-12) also was inhibited by certain human anti-DNA mAbs, but the binding of another murine mAb (162-11) to a different epitope of p70/p80 was not. These studies suggest that certain anti-DNA antibodies may interact with the variable regions of a population of anti-p70/p80 antibodies. The cryoglobulins found in the sera containing both anti-p70/p80 and anti-DNA antibodies may represent immune complexes consisting, in part, of idiotype and antiidiotype.


1995 ◽  
Vol 181 (3) ◽  
pp. 1157-1167 ◽  
Author(s):  
J H Roark ◽  
C L Kuntz ◽  
K A Nguyen ◽  
A J Caton ◽  
J Erikson

Anti-DNA antibodies, specifically those that stain nuclei in a homogenous nuclear (HN) fashion, are diagnostic of systemic lupus erythematosus (SLE) and the MRL-lpr/lpr SLE murine model. We have used a heavy chain transgene that increases the frequency of anti-HN antibodies to address whether their production in SLE is the consequence of a defect in B cell tolerance. Anti-HN B cells were undetectable in nonautoimmune-prone transgenic mice, but in MRL-lpr/lpr transgenic mice their Ig was evident in the sera and they were readily retrievable as hybridomas. We conclude that nonautoimmune animals actively delete anti-HN-specific B cells, and that MRL-lpr/lpr mice are defective in this process possibly because of the lpr defect in the fas gene.


1992 ◽  
Vol 176 (3) ◽  
pp. 761-779 ◽  
Author(s):  
D M Tillman ◽  
N T Jou ◽  
R J Hill ◽  
T N Marion

Disease activity in systemic lupus erythematosus is closely associated with the appearance of immunoglobulin (Ig)G antibody to native DNA in both humans and mice. Like normal antibody responses, the anti-DNA autoantibody first appears as IgM and then switches to IgG. Structural studies of IgG anti-DNA suggest that these antibodies are the products of clonally selected, specifically stimulated B cells. The origins of the IgM anti-DNA have been less clear. To determine whether the earlier appearing IgM anti-DNA antibody in autoimmune mice also derives from clonally selected, specifically stimulated B cells or B cells activated by nonselective, polyclonal stimuli, we have analyzed the molecular and serological characteristics of a large number of monoclonal IgM anti-DNA antibodies from autoimmune (NZB x NZW)F1 mice. We have also analyzed IgM and IgG anti-DNA hybridomas obtained from the same individual mice to determine how the later-appearing IgG autoantibody may be related to the earlier-appearing IgM autoantibody within an individual mouse. The results demonstrate that: (a) IgM anti-DNA, like IgG, has the characteristics of a specifically stimulated antibody; (b) IgM and IgG anti-DNA antibodies have similar variable region structures and within individual mice may be produced by B cells derived from the same clonal precursors; (c) recurrent germline and somatically derived VH and VL structures may influence the specificity of anti-DNA monoclonal antibody for denatured vs. native DNA; and (d) the results provide a structural explanation for the selective development of IgG antibody to native DNA as autoimmunity to DNA progresses in (NZB x NZW)F1 mice.


1998 ◽  
Vol 188 (7) ◽  
pp. 1247-1254 ◽  
Author(s):  
Hui Xu ◽  
Hui Li ◽  
Elisabeth Suri-Payer ◽  
Richard R. Hardy ◽  
Martin Weigert

Anti-DNA antibodies are regulated in normal individuals but are found in high concentration in the serum of systemic lupus erythematosus (SLE) patients and the MRL lpr/lpr mouse model of SLE. We previously studied the regulation of anti–double-stranded (ds)DNA and anti–single-stranded (ss)DNA B cells in a nonautoimmune background by generating mice carrying immunoglobulin transgenes coding for anti-DNAs derived from MRL lpr/lpr. Anti-dsDNA B cells undergo receptor editing, but anti-ssDNA B cells seem to be functionally silenced. Here we have investigated how anti-DNA B cells are regulated in recombination- activating gene (RAG)-2−/− mice. In this setting, anti-dsDNA B cells are eliminated by apoptosis in the bone marrow and anti-ssDNA B cells are partially activated.


2019 ◽  
Author(s):  
Quentin Simon ◽  
Alexis Grasseau ◽  
Marina Boudigou ◽  
Laëtitia Le Pottier ◽  
Bénédicte Rouvière ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


Sign in / Sign up

Export Citation Format

Share Document