scholarly journals Characterization of an Epstein-Barr virus receptor on human epithelial cells.

1992 ◽  
Vol 176 (5) ◽  
pp. 1405-1414 ◽  
Author(s):  
M Birkenbach ◽  
X Tong ◽  
L E Bradbury ◽  
T F Tedder ◽  
E Kieff

Epstein-Barr virus (EBV) adsorption to human B lymphocytes is mediated by the viral envelope glycoprotein, gp350/220, which binds to the cell surface protein, CD21, also known as the CR2 complement receptor. Human epithelial cells also express an EBV receptor. A candidate surface molecule of 195 kD has previously been identified on an epithelial cell line and explanted epithelial tissue by reactivity with the CD21 specific monoclonal antibody (mAb), HB-5a. In experiments to further characterize the epithelial cell EBV receptor, we have found that two human epithelial cell lines, RHEK-1 and HeLa, specifically bind intact EB virions. A 145-kD protein, similar in size to B lymphocyte CD21, was specifically precipitated from surface iodinated RHEK-1 cells using the HB-5a mAb, or using purified soluble gp350/220 coupled to agarose beads. The previously identified 195-kD protein did not bind to gp350/220 or react with two other anti-CD21 mAbs. CD21 homologous RNA, similar in size to the B lymphocyte CD21 mRNA, was detected in both RHEK-1 and HeLa cells. The nucleotide sequence of the epithelial cell cDNA was identical to B lymphocyte CD21. The longest clone differs from previously reported CD21 cDNAs in having additional 5' untranslated sequence. Polymerase chain reaction amplification of RHEK-1- or B lymphoblastoid-derived cDNA verified that most CD21 transcripts are initiated at least 30-50 nucleotides upstream of the previously reported mRNA cap site. These experiments demonstrate that human epithelial cells can express CD21, and that CD21 is likely to mediate EBV adsorption to epithelial cells.

1999 ◽  
Vol 73 (3) ◽  
pp. 2115-2125 ◽  
Author(s):  
Joyce D. Fingeroth ◽  
Margaret E. Diamond ◽  
David R. Sage ◽  
Jody Hayman ◽  
John L. Yates

ABSTRACT Epstein-Barr virus (EBV) is invariably present in undifferentiated nasopharyngeal carcinomas, is found sporadically in other carcinomas, and replicates in the differentiated layer of the tongue epithelium in lesions of oral hairy leukoplakia. However, it is not clear how frequently or by what mechanism EBV infects epithelial cells normally. Here, we report that a human epithelial cell line, 293, can be stably infected by EBV that has been genetically marked with a selectable gene. We show that 293 cells express a relatively low level of CD21, that binding of fluorescein-labeled EBV to 293 cells can be detected, and that both the binding of virus to cells and infection can be blocked with antibodies specific for CD21. Two proteins known to form complexes with CD21 on the surface of lymphoid cells, CD35 and CD19, could not be detected at the surface of 293 cells. All infected clones of 293 cells exhibited tight latency with a pattern of gene expression similar to that of type II latency, but productive EBV replication and release of infectious virus could be induced inefficiently by forced expression of the lytic transactivators, R and Z. Low levels of mRNA specific for the transforming membrane protein of EBV, LMP-1, as well as for LMP-2, were detected; however, LMP-1 protein was either undetectable or near the limit of detection at less than 5% of the level typical of EBV-transformed B cells. A slight increase in expression of the receptor for epidermal growth factor, which can be induced in epithelial cells by LMP-1, was detected at the cell surface with two EBV-infected 293 cell clones. These results show that low levels of surface CD21 can support infection of an epithelial cell line by EBV. The results also raise the possibility that in a normal infection of epithelial cells by EBV, the LMP-1 protein is not expressed at levels that are high enough to be oncogenic and that there might be differences in the cells of EBV-associated epithelial cancers that have arisen to allow for elevated expression of LMP-1.


2001 ◽  
Vol 82 (10) ◽  
pp. 2373-2383 ◽  
Author(s):  
Seiji Maruo ◽  
Lixin Yang ◽  
Kenzo Takada

Epstein–Barr virus (EBV) is associated with various epithelial malignancies such as nasopharyngeal carcinoma and gastric carcinoma, and causes oral hairy leukoplakia, a productive EBV infection of the differentiated epithelium of the tongue. However, it is not clear by what mechanism EBV infects epithelial cells. We generated a recombinant EBV that expresses enhanced green fluorescent protein in order to monitor EBV entrance into epithelial cells quickly and quantitatively. Using this monitoring system, we examined the roles of gp350 and gp25 in EBV infection of epithelial cells by utilizing soluble forms of the gp350 and gp25 proteins. EBV infection of three of four examined epithelial cell lines, 293, NU-GC-3 and Lovo, was almost completely blocked by pretreatment of cells with a soluble form of gp350 (designated gp350Ig), and this blockage was dependent on the CD21-binding region of gp350. On the other hand, infection of the other epithelial cell line, AGS, was not inhibited at all by pretreatment with gp350Ig. Moreover, we found that a soluble form of gp25 (designated gp25Ig) preferentially bound to epithelial cells rather than B cells, and pretreatment of cells with gp25Ig substantially blocked EBV infection of some epithelial cells. These results indicate the existence of two distinct pathways in EBV infection of epithelial cells, a gp350-dependent pathway and a gp350-independent pathway, and that gp25 can play a role in the infection of some epithelial cells.


2019 ◽  
Vol 43 (6) ◽  
pp. 674-683 ◽  
Author(s):  
Jia Chen ◽  
Richard Longnecker

ABSTRACT Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009783
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Nicholas P. Pauly ◽  
Jillian A. Bristol ◽  
Scott E. Nelson ◽  
...  

The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.


2005 ◽  
Vol 79 (24) ◽  
pp. 15430-15442 ◽  
Author(s):  
Dirk M. Pegtel ◽  
Aravind Subramanian ◽  
Tzung-Shiahn Sheen ◽  
Ching-Hwa Tsai ◽  
Todd R. Golub ◽  
...  

ABSTRACT Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGα6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGα6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGα6 protein levels are increased in the migrating cells. Blocking antibodies against ITGα6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGα6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.


2014 ◽  
Vol 89 (5) ◽  
pp. 2684-2697 ◽  
Author(s):  
Teru Kanda ◽  
Mamiko Miyata ◽  
Makoto Kano ◽  
Satoru Kondo ◽  
Tomokazu Yoshizaki ◽  
...  

ABSTRACTThe Epstein-Barr virus (EBV) encodes its own microRNAs (miRNAs); however, their biological roles remain elusive. The commonly used EBV B95-8 strain lacks a 12-kb genomic region, known as BamHI A rightward transcripts (BART) locus, where a number of BART miRNAs are encoded. Here, bacterial artificial chromosome (BAC) technology was used to generate an EBV B95-8 strain in which the 12-kb region was fully restored at its native locus [BART(+) virus]. Epithelial cells were stably infected with either the parental B95-8 virus or the BART(+) virus, and BART miRNA expression was successfully reconstituted in the BART(+) virus-infected cells. Microarray analyses of cellular gene expression identified N-myc downstream regulated gene 1 (NDRG1) as a putative target of BART miRNAs. The NDRG1 protein was barely expressed in B cells, highly expressed in epithelial cells, including primary epithelial cells, and strongly downregulated in the BART(+) virus-infected epithelial cells of various origins. Althoughin vitroreporter assays identified BART22 as being responsible for the NDRG1 downregulation, EBV genetic analyses revealed that BART22 was not solely responsible; rather, the entire BART miRNA cluster 2 was responsible for the downregulation. Immunohistochemical analyses revealed that the expression level of the NDRG1 protein was downregulated significantly in EBV-positive nasopharyngeal carcinoma specimens. Considering thatNDRG1encodes an epithelial differentiation marker and a suppressor of metastasis, these data implicate a causative relationship between BART miRNA expression and epithelial carcinogenesisin vivo.IMPORTANCEEBV-related epithelial cancers, such as nasopharyngeal carcinomas and EBV-positive gastric cancers, encompass more than 80% of EBV-related malignancies. Although it is known that they express high levels of virally encoded BART miRNAs, how these miRNAs contribute to EBV-mediated epithelial carcinogenesis remains unknown. Although a number of screenings have been performed to identify targets of viral miRNAs, many targets likely have not been identified, especially in case of epithelial cell infection. This is the first study to use EBV genetics to perform unbiased screens of cellular genes that are differentially expressed in viral miRNA-positive and -negative epithelial cells. The result indicates that multiple EBV-encoded miRNAs cooperatively downregulate NDRG1, an epithelial differentiation marker and suppressor of metastasis. The experimental system described in this study should be useful for further clarifying the mechanism of EBV-mediated epithelial carcinogenesis.


2009 ◽  
Vol 38 (6) ◽  
pp. 1932-1949 ◽  
Author(s):  
Chung-Chun Wu ◽  
Ming-Tsan Liu ◽  
Yu-Ting Chang ◽  
Chih-Yeu Fang ◽  
Sheng-Ping Chou ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Mark R. Eichelberg ◽  
Rene Welch ◽  
J. Tod Guidry ◽  
Ahmed Ali ◽  
Makoto Ohashi ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV’s role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers. IMPORTANCE Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.


Sign in / Sign up

Export Citation Format

Share Document